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PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the “Guide for the

Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at

Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.
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This dissertation addresses three important problems in operations management.

The aim of the first problem is to highlight – and demonstrate via specific examples – the

need for algorithmic results for some fundamental set-based notions on which search in social

networks is expected to be prevalent. To this end, we argue that the concepts of an influential

set and a central set that highlight, respectively, the specific role and specific location of a

set are likely to be useful in practice. We formulate two specific search problems: the Elite

Group Problem (EGP) and the Portal Problem (PP), that represent these two concepts and

provide a variety of algorithmic results.

In the second paper, we introduce two new multi-period models – designed specifically to

capture the operations of a medium-size Depository Institution (DI) – that emerge from the

DI’s objective to minimize the total cost incurred in managing the inventory of cash over a

finite planning horizon. The Basic Model (BM) captures the DI’s mode of operations if it

viii
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chooses not to locally reuse cash and, instead, incur the cross-shipping penalty. The Reuse

Model (RM) represents the DI’s actions when it locally recirculates cash. We show that the

Value of Local Reuse for a DI, measured as the percentage cost saving between the optimal

solutions of BM and RM, is substantial.

The third problem investigates the concept of Industrial Symbiosis, a resource-sharing strat-

egy among co-located firms to engage traditionally separate industries in a collective ap-

proach that involves physical exchanges of materials, water, energy and by-products. In-

spired by a real-world example of a paper-sugar symbiotic complex, we study the impact

on a firm’s operational decisions from implementing an industrial symbiotic system. Our

focus is on understanding how the introduction of competition and nature of competition

will affect the firm’s willingness to implement the symbiotic system.

ix
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CHAPTER 1

INTRODUCTION

1.1 Structural Search and Optimization in Social Networks

The explosive growth in the variety and size of social networks has focused attention on

searching these networks for useful structures. Like the internet or the telephone network,

the ability to efficiently search large social networks will play an important role in the extent

of their use by individuals and organizations alike. However, unlike these domains, search on

social networks is likely to involve measures that require a set of individuals to collectively

satisfy some skill requirement or be tightly related to each other via some underlying social

property of interest.

The aim of this paper is to highlight – and demonstrate via specific examples – the need for

algorithmic results for some fundamental set-based notions on which search in social networks

is expected to be prevalent. To this end, we argue that the concepts of an influential set

and a central set that highlight, respectively, the specific role and specific location of a set

are likely to be useful in practice. We formulate two specific search problems: the Elite

Group Problem (EGP) and the Portal Problem (PP), that represent these two concepts and

provide a variety of algorithmic results. We first demonstrate the relevance of EGP and

PP across a variety of social networks reported in the literature. For simple networks (e.g.,

structured trees and bipartite graphs, cycles, paths, etc.), we show that an optimal solution

to both EGP and PP is easy to obtain. Next, we show that EGP is polynomially solvable

1
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on a general graph while PP is strongly NP-hard. Motivated by practical considerations, we

also discuss (1) a size-constrained variant of EGP together with its penalty-based relaxation

and (2) the solution of PP on balanced and full d-trees and general trees.

1.2 Value of Local Cash Reuse: Inventory Models for Medium-Size Depository

Institutions under the New Federal Reserve Policy

The effective local reuse of physical cash by Depository Institutions (DIs) is the primary goal

of the new cash recirculation policy of the Federal Reserve (Fed) of the United States. These

guidelines, implemented since July 2007, encourage the reuse of cash by (1) penalizing a DI

for the practice of cross-shipping: near-simultaneous deposit of used cash to – and withdrawal

of fit cash from – the Fed and (2) offering a custodial inventory program that enables a DI

to transfer fit cash to the Fed’s books, but physically hold it within the DI’s secured facility.

The effective management of the inventory of cash under these new guidelines is both a

challenging and important issue for DIs.

We introduce two new multi-period models – designed specifically to capture the operations

of a medium-size DI – that emerge from the DI’s objective to minimize the total cost incurred

in managing the inventory of cash over a finite planning horizon. The Basic Model (BM)

captures the DI’s mode of operations if it chooses not to locally reuse cash and, instead,

incur the cross-shipping penalty. Using two important structural properties, we provide a

polynomial-time dynamic programming algorithm for BM. The Reuse Model (RM) repre-

sents the DI’s actions when it locally recirculates cash. We first prove the hardness of RM

and then develop an integer programming formulation. A comprehensive test bed – based
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on our interaction with a leading secure-logistics provider – helps us to develop several useful

insights into the relative impacts of the DI-specific parameters and the Fed’s cross-shipping

fee on the effective management of cash. In particular, we show that the Value of Local

Reuse for a DI, measured as the percentage cost saving between the optimal solutions of BM

and RM, is substantial and analyze the forces that influence the volume of cross-shipping.

We also develop a rolling-horizon procedure to adapt the optimal solutions of BM and RM

for obtaining near-optimal real-time solutions in the presence of a modest amount of un-

certainty. Finally, we provide a comparative analysis of a DI’s decisions under the Fed’s

mechanism and those under a socially-optimal mechanism.

1.3 Process Innovation via an Industrial Symbiotic System: The Impact of

Competition on the Willingness to Implement

Industrial Symbiosis is defined as a resource-sharing strategy among co-located firms to

engage traditionally separate industries in a collective approach that involves physical ex-

changes of materials, water, energy and by-products. Inspired by a real-world example of a

paper-sugar symbiotic complex, we study the impact on a firm’s operational decisions from

implementing an industrial symbiotic system. The two products manufactured by the firm

are symbiotically connected, in the sense that the waste from the manufacture of one product

is used as a raw material for the second product, and vice-versa. We characterize the firm’s

operational optimal/equilibrium decisions for its two products – both in the presence and

absence of a symbiotic system – under monopoly as well as under competition. The focus of

our analysis is on understanding the behavior of the firm’s “willingness” to implement.
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Our models capture the supply-side (e.g., incurring a fixed cost and changes in variable pro-

duction costs) as well as the demand-side influence of implementing the symbiotic system.

The implementation enables the firm to label its two products as “green” (environment-

friendly). The consumers who have a relatively higher valuation for the green variants are

further differentiated, based on their loyalty to the green variants. We consider two set-

tings of Cournot competition – depending on whether or not competitors can produce the

green variants – in the presence of multiple types of consumers and multiple variants. The

difference in the firm’s total profits before and after implementation is used as a metric to

capture its willingness to implement the system. Three dominating forces that influence the

firm’s strategic decision to implement the system are (1) the proportion of the green con-

sumers in the market, (2) consumers’ appreciation for the green variants, and (3) changes

in the variable production costs after implementation. When the firm’s variable production

costs remain similar before and after implementation, then (1) if the proportion of green

consumers is high, then the arrival of competitors who only produce regular variants encour-

ages the implementation of a symbiotic system, (2) if consumers’ appreciation of the green

variants is low, then the firm’s willingness to implement is more (than in a monopoly) under

competition from firms who produce both variants. Also of interest are situations when

competition incentivizes the firm to implement and both the firm and consumers benefit

from the implementation. We identify two such scenarios (one for each type of competition),

when the fixed cost of implementing the system is modest.
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CHAPTER 2

STRUCTURAL SEARCH AND OPTIMIZATION IN SOCIAL NETWORKS ∗

2.1 Synopsis

A social network represents a social structure as a set of definite relationships between the

members – entities or groups – of a social system. In its most commonly used representation,

a social network can be viewed as a network of nodes (individuals, organizations, web pages,

etc.) related to one another using edges (friendship, commercial transactions, url links, etc.).

Over the years, social networks have been used to analyze social phenomena in a wide variety

of domains, including sociology, epidemiology, social psychology, economics, anthropology,

history, and human geography (Scott 2000, Wasserman and Faust 1994, Brandes and Er-

lebach 2005). Often in social network analysis the interest is to explain individual or group

behavior in the context of the larger social structure in which the individual or group is

situated.

More recently, “social networking sites” such as Facebook (http://www.facebook.com) and

Myspace (http://www.myspace.com) have proliferated on the internet and help users connect

based on a wide range of interests and practices. While some sites support the maintenance

of pre-existing social networks, others help strangers connect based on their shared interests

∗Accepted for Publication, Milind Dawande, Vijay Mookerjee, Chelliah Sriskandarajah,
Yunxia Zhu, Structural Search and Optimization in Social Networks, INFORMS Journal on Com-
puting, the Institute for Operations Research and the Management Sciences, 7240 Parkway Drive,
Suite 300, Hanover, Maryland 21076 USA.
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and/or activities. Some sites cater to diverse audiences while others attract people based on

some shared identity (Boyd and Ellison 2007). Typically, the participants (players) of the

network derive some utility from the network, for example, to find each other for exchanging

ideas, solving problems, companionship, and so on.

It should be clear that, like any other network-based phenomenon such as the telephone or

the internet, the ability of the individual or group to derive value depends on the ability to

search the network for contacts. For example, searching the telephone network is facilitated

by a phone directory, browsing the internet requires a browser and a search engine, and so

on. Many researchers believe that the advent of the web browser and search engine was most

influential to the explosive growth of the internet. By analogy, it can be proposed that the

utility of social networks to individuals and organizations will also depend on the ability to

search the networks of interest for useful structures. For example, a participant in Facebook

may want to discuss a topic of interest and may need to call upon a selected subset of friends

to join the discussion. In the Open Source community, individual developers form a social

network by virtue of having worked on common projects. In such a community, a developer

or a firm may want to create a project-team of members with certain specialized skills and

access to resources.

Searching a social network often creates search problems that are different from those en-

countered in other network phenomena like the web or the telephone network. In the web,

the typical nature of search is to provide the user with a set of web sites that match based

upon a list of search terms. There is usually no requirement that the web sites returned by

the search engine satisfy some complex relationship to one another, other than, of course,
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the trivial relationship that they must all match (to varying degrees) with the list of search

terms.

On the other hand, search problems in a social network can be more complex. In particular,

the search results may often need to satisfy a set measure. For example, in extracting a

project-team from a larger network, it may be important that the set of developers that

are returned collectively satisfy some skill requirements, but, in addition, are tightly related

to one another by virtue of having worked on common projects. With the improvement in

computing technology, the data and the tools needed to identify the network of interest are

readily available. From a technical perspective, when the results of a search need to meet

(or exceed) a specified set measure (specifically, a non-additive measure), the search often

becomes combinatorial in nature. Search problems in social networks therefore provide a

challenging ground for researchers interested in applying graph-theoretic, algorithmic meth-

ods to the area. Our interest in this study stems from the new problems and opportunities

that are likely to arise for the use of graph-theoretic methods to solve interesting search

problems in social networks.

The remainder of the paper is organized as follows. In Section 2.2, we argue that two

set-based notions – influential sets and central sets – are likely to provide a fundamental

structural basis for important search problems arising in a variety of practical social networks,

and introduce two optimization problems – EGP and PP – corresponding to these two

notions. Section 2.3 investigates the complexities of these problems on several special graphs

as well as on general graphs. Section 2.4 concludes the paper and provides directions for

future research.
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2.2 The Notions of Influential Sets and Central Sets

Given the significance of search in social networks and, consequently, the need for efficient

algorithms, an important question arises naturally: What are some fundamental set-based

notions on which search in social networks is expected to be prevalent? Traditionally, in

social network analysis, two fundamental properties of individual members – their location

and their role in the network – have proven to be fundamental. This is natural, since these two

properties provide insights into the groupings and interactions in the network. Accordingly,

for individual members of a social network, network centrality measures, including Degree

Centrality, Closeness Centrality, and Betweenness Centrality, have been heavily investigated

and used (see, e.g., Freeman 1979; Brandes and Erlebach 2005, Chapters 3-5). For set-based

search too, structures and measures that highlight the specific role or specific location of a

set are likely to be the most useful in practice. The need and use of such set-based measures

has already been documented in recent studies. For example, the notions of group (or set)

betweeness and group degree centralities are discussed in Chapter 4 of Carrington et al.

(2005) and in Everett and Borgatti (1999).

The motivation to study the role played by members in a network has to do with under-

standing the influence a member can potentially cast over other members in the network.

Such notions of influence exerted by a single member can intuitively be extended to the

influence a set of members can potentially exert over the rest of the group. A set of influ-

ential members may be useful to identify for a variety of reasons, often having to do with

wanting to promote an idea, product, or message to other members of the network. For

example, a firm may wish to advertise a new product or service and use an influential group
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of members to help in this cause (Hill et al. 2006). Similarly, a welfare organization may

want to disseminate ideas of social importance within a community of interacting members

and use an influential set of members for spreading the message in an effective and timely

manner. Another purpose to study influential groups is often to identify a set of members

who possess specialized knowledge or information pertaining to a specific domain, namely,

the key experts in the group. For example, it may be important to identify a set of expert

oncologists for devising an informed, yet balanced plan of action to treat a difficult case.

Here, a set of experts may be especially relevant to consult to eliminate or reduce bias as

well as to surface fresh perspectives that can aid in problem solving.

The motivation to study the location of a member (or a set of members) is subtly different

from that of examining member roles. Location is essentially a topological characteristic

that has to do with a member or a set of members acting to facilitate contact between other

interacting members of the network. A centrally located member is well connected, or, in

other words, has better access to other members by virtue of acting as a conduit that allows

exchanges and flows of information or ideas in the network. A central location does not nec-

essarily imply influence, neither does an influential member necessarily need to be centrally

located. Indeed, recent research in Reality Mining (Pentland 2004, Greene 2008, Hesseldahl

2008) and interaction within social networks reveals significant distinctions between these

two concepts. For example, managers who may be influential within a business organization

usually do not play a central role in the routing of communications between teams (Gloor

et al. 2007, Thompson 2008). The players central for communication could, instead, be

less influential employees. The question arises: what property does location convey that is
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useful to a problem solver? One benefit of identifying centrally located members is that it

provides one with an understanding of the paths that are heavily used in the network so

that sufficient resources can be made available at these locations to avoid communication

bottlenecks from occurring. An interesting variant is one where the problem solver may want

to thwart communication: the activities of a terrorist group may be significantly impaired

by striking at locations or members that are central to the flow of communication within the

network (Erickson 1981).

The twin notions of influence and centrality admit a variety of interpretations, depending

on the context of the social network under consideration. Accordingly, there can be several

meaningful measures to evaluate “good” influential and central sets. For example, to measure

the centrality of a set of vertices, the classical measure of betweenness centrality of a single

vertex has been extended to group betweenness centrality (Everett and Borgatti 1999) and

co-betweenness centrality (Kolaczyk et al. 2009). Along this theme, we propose two specific

measures: one for an influential set and the other for a central set. We now describe two

optimization problems that correspond to these two measures, discuss their origins, and

provide examples of social networks where these problems are relevant.

2.2.1 The Elite Group Problem (EGP) and The Size-Constrained Elite Group

Problem (SCEGP)

Technical Definition

Instance: n players; an “influence” social network represented by a directed graph G(V, A),

|V | = n, in which the nodes represent the players and the set of arcs represent pairwise
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influences pertaining to a social property: a directed arc (i, j) indicates that i is influenced

by j. For SCEGP, a positive integer k ≤ n is also given.

Solution of EGP: A set W ⊆ V such that there does not exist a directed arc (i, j) ∈ A

with i ∈ W , j 6∈ W .

Solution of SCEGP: Same as EGP, with the additional requirement that |W | ≤ k.

Objective Function: Maximize the total number of directed arcs, γW , incident on any

node in W from nodes in V \W . More precisely, the score γW is defined as follows: γW =

∑
i6∈W,j∈W aij, where aij = 1, if (i, j) ∈ A; 0 otherwise.

Note that in a graph G(V, A), there is at least one feasible solution for EGP, namely the

complete set of nodes V , with score γV = 0. Also, observe that adding more nodes to an elite

group does not necessarily increase the number of directed arcs into the group. If a node,

say j, is added to an elite group W , then to obtain γW∪{j}, we (i) add to γW the number of

arcs from V \{W ∪ {j}} to j and (ii) subtract the number of arcs from node j to the nodes

in W . Thus, depending on this tradeoff, γW∪{j} can be either larger or smaller or the same

as γW .

An elite An elite 
group

Figure 2.1. An “Influence” Network and an Elite Group.
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Origin and Applications

The notion of an “elite” group originated from efforts to examine and understand social

behavior within a close-knit community. In the 1980s, Sociologist Li Fan analyzed the giving

(and receiving) of gifts between the residents of a Mongolian town (Wellman et al. 2001), and

found that one (elite) block of residents received gifts from the others but only exchanged

gifts among each other. Thus, as a set, this group of residents only received gifts from the

other members of the town.

Another example of the notion of an elite group occurs in the analysis of the advice-seeking

behavior of the members of a school, reported in Hawe and Ghali (2008). Here, the social

network revealed that, together, the Principal, the Vice-Principal, and some key technical

staff, form a group with the properties that (1) most of the other staff members seek advice

from one or more members of this group and (2) the members of the group typically seek

advice only from (one or more) members within the group. Thus, to influence opinion within

the community in general, it may be beneficial to first convince this group of individuals.

In the context of social network analysis, the members of an elite group can be regarded as

key players or opinion leaders. For instance, if a member of a community is often consulted

by other members on (say) health issues, then she can be regarded as a key player (an

“elite” member) in the opinion-seeking network of that community (Borgatti 2006). Another

example is the co-sponsorship network in the United States Senate (Fowler 2006). In this

network, the prominent senators typically receive a significant amount of co-sponsorship.

Thus, the set of these prominent senators constitute an (approximate) elite group.
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2.2.2 The Portal Problem (PP) and The Exact-Size Portal Problem (ESPP)

Technical Definition

Instance: n players; a connected, undirected graph G = (V, E), |V | = n, in which the nodes

represent the players and edges represent the pairwise connections between the players; a

positive integer k ≤ n.

Solution: For PP, a set Q ⊆ V such that |Q| ≤ k. For ESPP, a set Q ⊆ V such that

|Q| = k.

Objective Function: Maximize r(Q), defined as follows:

r(Q) =
BC(Q)


n− |Q|

2




and BC(Q) =
∑

s6∈Q,t6∈Q,s6=t

σst(Q)

σst

where σst is the total number of shortest paths from node s to node t; s, t ∈ V \Q, s 6= t, and

σst(Q) is the number of shortest paths from node s to node t which have at least one node

in set Q as an internal node.

A portal 
of size 1

A portal 
of size 2

Figure 2.2. Optimal Portals in Two Simple Networks.

Previous Work and Applications

PP is a natural extension of the popular Betweenness Centrality (BC) measure (Freeman
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1979, Scott 2000) for individual nodes (members) of a social network; for k = 1, an optimal

solution to PP is a node with the highest BC. Everett and Borgatti (1999) extend the

notion of BC to groups, and illustrate the measure on a few examples. For a given set

of nodes Q, Puzis et al. (2007) provide a polynomial-time algorithm to compute the non-

normalized measure BC(Q) (referred to as “Group Betweenness Centrality”). They prove

that the problem of obtaining a set with the highest Group Betweenness Centrality (i.e.,

maxQ⊆V BC(Q)) is NP-hard and also propose a simple heuristic. Note that the behavior

of our normalized measure r(Q) can be fundamentally different from that of BC(Q). In

general, the set which maximizes the Group Betweenness Centrality may not necessarily be

an optimal solution of our model, and vice-versa. Puzis et al. (2007) discuss an interesting

application of a network of computers in which a limited number of virus-cleaning devices

need to be placed at a subset of nodes (computers) to prevent the spread of viruses. To

maximize the utility of the devices, it is beneficial to place them at the nodes of a portal of

an appropriate size. Another interesting application where a portal may need to be identified

is in a disease-outbreak network. For example, Klovdahl et al. (2001) describe a TB-outbreak

network and motivate the need to identify the critical members in this network to control the

spread of the disease. Everett and Borgatti (1999) discuss the interaction network of animals

(monkeys) and use the notion of a portal to determine a socially central set of animals.

2.3 Algorithmic Analysis

We now analyze EGP and PP. For a search problem, a basic question is that of its compu-

tational complexity. For simple networks, an optimal solution to both problems is easy to
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obtain. For EGP, we first illustrate this and then identify a structural property of an elite

group that can help in reducing the size of the underlying graph. Then, we show that EGP is

polynomially solvable for a general network. Next, motivated by practical considerations, we

introduce a size-constrained version of EGP together with its penalty-based relaxation and

show that both are strongly NP-hard. For PP, we first show that PP is strongly NP-hard

on a general graph. We then consider several special graphs on which PP is polynomially

solvable. Finally, we discuss a heuristic for general trees.

2.3.1 The Elite Group Problem (EGP)

Given a directed graph G(V, A), recall that an elite group is a set W ⊆ V such that there

does not exist any directed arc (i, j) ∈ A with i ∈ W , j 6∈ W . The objective of EGP is

to maximize the total number (or score), γW , of directed arcs incident on the nodes in W .

For some simple networks, it may be straightforward to prove the optimality of a specific

elite group. Rooted up- and down-trees are especially useful networks to study because they

represent hierarchically organized structures, e.g., reporting relationships in a department,

natural taxonomies, etc. (Cross and Parker 2004).

All the leaf 
nodes of a 
rooted rooted 
down-tree 
represent 
an optimal 
elite groupelite group

All the non-
leaf nodes 
of a rooted of a rooted 
up-tree 
represent 
an optimal 
elite groupelite group

Figure 2.3. Optimal Elite Group for a Rooted Down-Tree and a Rooted Up-Tree.
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Observation 2.3.1 If the graph G is a rooted down-tree (i.e., each node in G, except the

root, has a unique predecessor and all arcs in G are directed downwards from the root to the

leaf nodes. See Figure 2.3), then the elite group W ∗ consisting of all the leaf nodes of G is an

optimal elite group. If the graph G is a rooted up-tree (i.e., each node in G, except the root,

has a unique successor and all arcs in G are directed upwards from the leaf nodes towards

the root. See Figure 2.3), then the elite group W ∗ consisting of all non-leaf nodes of G is an

optimal elite group.

Proof: First, note that the root is not included in an optimal elite group; for otherwise,

each node of G is in the elite group and the score is 0, which is clearly a non-optimal solution

for any non-trivial rooted down-tree G. Consider an optimal elite group W which contains a

non-leaf node t such that the unique predecessor of t is not in W . Note that all descendants

of t are also in W . Let nt ≥ 1 be the number of direct descendants of t in G. Then, removing

t from W results in a feasible elite group W
′
= W−{t} with score γW ′ = γW +(nt−1) ≥ γW .

Continuing, we can similarly remove all non-leaf nodes from W without decreasing the score

to obtain an elite group consisting only of leaf nodes. Thus, there exists an optimal elite

group W ∗ consisting only of leaf nodes. Finally, note that W ∗ must contain all leaf nodes.

This follows since including a leaf node strictly increases the score of an elite group.

The proof for a rooted up-tree is similar.

Our next result helps us “shrink” the strongly connected components (e.g. directed cycles)

in G to single nodes in our search for an elite group. We will use this result later in the proof

of Theorem 2.3.3.
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Observation 2.3.2 If G contains a strongly connected component, and at least one node on

this component belongs to an elite group W (respectively, the complement W = V \W ), then

all the other nodes on the component must belong to W (respectively, W ).

Proof: Consider a strongly connected component C which includes nodes v1, v2, . . . , vn.

Suppose, without loss of generality, v1 ∈ W . Since there is a directed path from v1 to v2,

node v2 must belong to W as well. Continuing this argument, nodes v3, v4, · · · , vn must

belong to W . Similarly, if, say, v1 ∈ W , then {v2, v3, . . . , vn} ⊆ W . For otherwise, if vj ∈ W

for some j ∈ {2, 3, . . . , n}, then v1 ∈ W . The result follows.

Note that there are many polynomial algorithms to find a strongly connected component

(if one exists) in a graph. If G contains a strongly connected component C, then, by using

Observation 2.3.2, we can shrink C into a single node. An arc in the original graph between

a node v ∈ V \C and a node of C is represented in the shrunk graph as between v and the

(shrunk) node representing the component. Thus, in the shrunk graph, we use a separate

new arc to represent each arc between a node in V \C and a node of C in the original graph.

Therefore, in general, the shrunk graph becomes a multigraph since there may be parallel

arcs between two nodes. We can continue this type of shrinking until there is no non-trivial

strongly connected component in the modified shrunk graph. Consequently, we can assume

without loss of generality that the network is a Directed Acyclic Graph (DAG). Therefore,

EGP translates into finding a sink set of maximum indegree in a DAG. The following result

follows immediately from Observation 2.3.2.

Lemma 2.3.1 There is a one-to-one correspondence between elite groups in G and elite

groups in the shrunk graph: For every elite group W in G, we can get one in the shrunk
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graph with the same score by taking the nodes of the shrunk graph corresponding to all the

strongly connected components in W . Conversely, for every elite group W
′
in the shrunk

graph, we can get one in G with the same score by taking the nodes in all the strongly

connected components corresponding to the nodes in W
′
.

Next, we show that EGP is polynomially solvable.

Theorem 2.3.2 The EGP is polynomially solvable.

Proof: For j ∈ V , define πj ∈ {0, 1} as follows:

πj =





1, node j belongs to the elite group W ;

0, otherwise.

Then, an integer programming (IP) formulation for EGP is as follows:

max
∑

(i,j)∈A

(πj − πi)

s.t. πi − πj ≤ 0, ∀ (i, j) ∈ A

πi ∈ {0, 1}, ∀ i ∈ V

For a directed arc (i, j), if node i is in W (i.e., πi = 1), then node j must also be in W (i.e.,

πj = 1). Otherwise, if πi = 0, then πj ∈ {0, 1}. This is enforced by the first constraint.

In the objective function, (πj − πi) represents the contribution of arc (i, j) to γW : if nodes

i and j are both in W or both in V \W (i.e., πi − πj = 0), then the contribution is 0. If

node i is in V \W and node j is in W (i.e., πi = 0, πj = 1), then the contribution is 1. The

constraints of the IP can be written as Aπ ≤ 0, where A is the node-arc incidence matrix of

G and π ∈ {0, 1}|V |. It is well-known that the node-arc incidence matrix of a directed graph

is totally unimodular (see, e.g., Hoffman and Kruskal 1956, Nemhauser and Wolsey 1988).
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Thus, the linear programming relaxation of the above IP results in an integer optimum. The

result follows.

Note that the shrinking of strongly connected components (Lemma 2.3.1) maintains the

total unimodularity of the constraint matrix of the IP above. Thus, the size of a network

containing strongly connected components can be reduced before formulating the EGP. The

objective function of the IP above is to maximize the number of arcs directed into the elite

group; instead, if we change the objective function to maximize a weighted linear combination

of arcs directed into the elite group, the modified problem remains polynomially solvable.

Remark 1: (penalizing the size of the elite group) Note that EGP does not impose any

constraint on the cardinality (i.e., the number of nodes) of the elite group. In Section 2.3.1, we

consider a hard constraint on the cardinality. An alternative is to impose a “soft” constraint

by imposing a penalty p > 0 on the cardinality. In this case, the objective function in the IP

above changes to max
∑

(i,j)∈A (πj − πi) − p
∑

i∈V πi. Since this modified objective is linear

and the constraint matrix is totally unimodular, the modified problem remains polynomially

solvable.

Size-Constrained Elite Group Problem (SCEGP)

Typically, the purpose of identifying an elite group is to use the members of this group to

effectively influence the other members of the social network. Thus, for practicability in

managing this subsequent task, the size of an elite group may need to be restricted. Moti-

vated by this requirement, Theorem 2.3.3 discusses the complexity of the Size-Constrained
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Elite Group Problem (SCEGP), defined as follows: Given a positive integer k ≤ n, find an

optimal elite group W ⊆ V with |W | ≤ k.

Theorem 2.3.3 The decision problem corresponding to SCEGP is strongly NP-Complete.

Proof: The strongly NP-Complete problem which we use in our reduction is the Balanced

Biclique Problem (Garey and Johnson 1979), defined as follows.

Balanced Biclique Problem (BBP)

Instance. An undirected Bipartite Graph G = (U ∪ V, E), with |U | = |V | = n. A positive

integer k ≤ n.

Solution. An induced subgraph G1 ⊆ G such that G1 = (U1∪V1, E1), U1 ⊆ U, V1 ⊆ V, |U1| =

|V1| = k, E1 ⊆ E, and u1 ∈ U1, v1 ∈ V1 implies that {u1, v1} ∈ E1. The size of the biclique

is 2k.

Given an arbitrary instance of BBP specified by G, we construct an instance of SCEGP on

a related graph G′. The construction of G′ is done in two steps. First, we obtain Gc, the

bipartite complement graph of G. Then, we add two additional node sets O and S, extend

each node in U into a directed cycle, and give directions to all edges to get G′. We now

explain our construction and illustrate with an example of G in Figure 2.4:

Step 1 . Get Gc, the bipartite complement graph of G (see Figure 2.4).

Step 2 . We add two node sets O and S consisting, respectively, of n3 and n2 nodes. The

nodes of O (resp., S) form a directed cycle. There is a directed arc from each node oi ∈

O to each node in U . There is a directed arc from each node in V to each node si ∈

S. Let m = n + n2. Next, we extend each node ui ∈ U into a length m directed cycle
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VU A balanced 
biclique of 
size 4

u1

u

size 4
v1

v2

U1 V1

u2

u3

v2

v3

u4
v4

VU

u1

u2

v1

v2

U1 V1

u2

u3

v2

v3

u4
v4

Figure 2.4. A Bipartite Graph G with a Balanced Biclique, and Its Bipartite Complement
Graph Gc, Which is Used in the Proof of Theorem 2.3.3.

ui
For any node ui in U, 
we extend it to a 

ui,m-1ui,1

we extend it to a 
directed cycle of 
length m. 

u uui,2 ui,3

Figure 2.5. The Widget, a Directed Cycle with Length m, Used in the Proof of Theorem 2.3.3.

Ci by adding m − 1 additional nodes (ui,1, ui,2, · · · , ui,m−1) (see Figure 2.5). Let U ′ =

{ui, ui,1, ui,2, · · · , ui,m−1|ui ∈ U, i = 1, 2, · · · , n}. The edges between O and U ′ are directed

from O to U ′, those between U ′ and V are directed from U ′ to V , and those between V and

S are directed from V to S. The construction of G′ is now complete (see Figure 2.6). Let

N = O ∪ U ′ ∪ V ∪ S. On G′, consider the following decision question for SCEGP :

DECISION QUESTION: Let t = km + (n − k) + n2 and D = kn3 + kn2. Does there exist

an elite group W in G′ such that |W | ≤ t, and γW ≥ D?

Note that the construction of the decision problem from the given instance of the BBP is

polynomially bounded. That is, the total number of nodes in G′ is bounded by a polynomial

in n, as is the time necessary to construct a description of the input of the decision problem.
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V SO U'

A directed A directed 
cycle of 
n2 nodes

A directed A directed 
cycle of 
n3 nodes

Figure 2.6. The Constructed Graph G′ for SCEGP .

The decision problem is clearly in class NP. We now show that the decision question has an

affirmative answer if and only if the original graph G contains a balanced biclique of size 2k

(i.e, |U1| = |V1| = k).

=⇒ Suppose U1 ∪ V1 is a balanced biclique of size 2k in G. Let U2 = U\U1, V2 = V \V1.

In G′, let U
′
1 = {Ci|ui ∈ U1}, U

′
2 = {Ci|ui ∈ U2}, W = U

′
1 ∪ V2 ∪ S, W = O ∪ U

′
2 ∪ V1

(see Figure 2.7). We now show that the set W is an elite group that provides an affirmative

answer to the decision question.

First we need to prove the set W is a valid elite group in G
′
, i.e., there is no arc from W to

W . Since U1 ∪ V1 is a biclique of G, then there is no arc from U
′
1 to V1 in G′. Since G is

bipartite, there is no arc between U
′
1 and U

′
2. Also, by construction, there is no arc from U

′
1

to O. Thus, there is no arc from U
′
1 to W . Similarly, there is no arc from V2 to W and from

S to W . Thus, W is a valid elite group.

Next, observe that |W | = |U ′
1| + |V2| + |S| = km + (n − k) + n2 = t. Finally, note that γW

is the number of arcs from W to W . The number of arcs from O to U
′
1 (respectively, V1 to
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V SO U'
W

c1

v1

v2
c2

c3

v2

v3

c4
v4

Figure 2.7. Graph G′ with Elite Group Set W .

S) is kn3 (respectively, kn2). Also, the number of arcs from U
′
2 to V2 is nonnegative. Thus,

γW ≥ kn3 + kn2 = D. The result follows.

⇐= Suppose W is an elite group in G′ with |W | ≤ t and γW ≥ D. Let W = N\W . The

following claims characterize the set W .

Claim 2.3.1 In G′, the nodes in Ci either all belong to W or all belong to W . Similarly,

the nodes in S (respectively, O) either all belong to W or all belong to W .

Proof: The nodes in Ci (respectively, S, O) form a directed cycle. The result follows from

Observation 2.3.2.

Claim 2.3.2 Each node in O must belong to W . Similarly, each node in S must belong to

W .

Proof: Suppose a node in O belongs to W . Then, from Claim 2.3.1, each node in O

belongs to W . Also, from the definition of elite group, each node in U ′ must belong to W .

Consequently |W | ≥ |O|+ |U ′| = n3 + nm. Since n ≥ 2 and n ≥ k, we have n3 > n2 + n >
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n2 + n − k and nm ≥ km. So n3 + nm > (n2 + n − k) + km, which implies |W | > t. This

contradicts the assumption that |W | ≤ t. Thus, each node in O must belong to W .

Suppose a node in S belongs to W . Then, from Claim 2.3.1, each node in S belongs to W .

Also, each node in V must belong to W . As shown above, each node in O is in W . Thus,

only a subset Q′ ⊆ U ′ can belong to W . Let Q = U ∩W . Note that |W | = |Q′| = m|Q|.

Since m = n + n2 and |W | ≤ t = n2 + km + n− k = km + m− k = (k + 1)m− k, we have

|W | = m|Q| ≤ (k + 1)m− k, so |Q| ≤ k. Thus γW = n3|Q| ≤ n3k < kn3 + kn2 = D, which

contradicts the assumption that γW ≥ D. Thus, each node in S belongs to W .

As a consequence of Claim 2.3.2, we have W = U
′
1 ∪ V2 ∪ S and W = O ∪ U

′
2 ∪ V1. Let

U1 = {ui|Ci ∈ U
′
1}.

Claim 2.3.3 |U1| = k.

Proof: We first show that |U1| ≤ k. Suppose |U1| ≥ k + 1, then |W | ≥ |U ′
1| = |U1|m ≥ (k +

1)m = km+m. Since m = n+n2 > (n−k)+n2, we have |W | ≥ km+m > km+n−k+n2 = t,

which contradicts the assumption that |W | ≤ t. Thus, |U1| ≤ k.

Next, we show that |U1| ≥ k. Suppose |U1| ≤ k − 1. Let |V1| = h. Then, |V2| = |V | − |V1| =

n− h. Recall that γW is the number of arcs from W to W .

The number of arcs from O to U
′
1 (resp., from V1 to S and from U

′
2 to V2) is n3|U1| ≤ n3(k−1)

(resp., hn2 and ≤ n|V2| = n(n− h)). Thus γW ≤ n3(k − 1) + hn2 + n(n− h) = kn3 − n3 +

n2 +h(n2−n). Since n2−n > 0 and 0 ≤ h ≤ n, (n2−n)h reaches its maximum when h = n.

Thus kn3− n3 + n2 + h(n2− n) ≤ kn3− n3 + n2 + n(n2− n) = kn3 < kn3 + kn2 = D. Thus,

γW < D, contradicting the assumption that γW ≥ D. Thus, |U1| ≥ k. The result follows.
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Claim 2.3.4 |V1| ≥ k.

Proof: Note that |W | = |U ′
1|+ |V2|+ |S| = km + |V2|+ n2 ≤ t = km + (n− k) + n2. Thus,

|V2| ≤ n− k. Since |V1| = n− |V2|, we have |V1| ≥ k.

Note that U
′
1 ⊆ W , V1 ⊆ W . Then, from the definition of an elite group, there is no arc from

U
′
1 to V1 in G′. Since G′ is the bipartite complement graph of G, there is an edge between

each node in U1 and each node in V1 in G. Since |U1| = k, |V1| ≥ k, there exists at least one

balanced biclique of size 2k in G. This concludes the proof of Theorem 2.3.3.

Relaxing the Structure of the Elite Group

Due to the combined requirements of cardinality and structure, the size-constrained elite

group problem (SCEGP) of Section 2.3.1 is not guaranteed to always have a non-trivial

feasible solution. However, in practice, we may sometimes prefer to identify a non-empty

group of players who can influence a large number of players outside the group, but are also

influenced by a few outsiders. To enable such solutions, we relax the constraint that forbids

directed arcs from nodes of an elite group W to V \W . Instead, for each arc, we impose a

penalty p > 0 that is specified as part of the input. The objective function is the number of

incoming arcs into W minus p times the number of arcs coming out of W . We refer to this

problem as the Size-Constrained Elite Group Problem with Penalties (SCEGPP).

Technical Definition

Instance: n players; an “influence” social network represented by a directed graph G(V, A),

|V | = n, in which the nodes represent the players and the set of arcs represent pairwise
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influences pertaining to a social property: a directed arc (i, j) indicates that i is influenced

by j. A positive integer k ≤ n. A positive number p.

Solution: A set W ⊆ V such that |W | ≤ k.

Objective Function: Maximize γW , the number of arcs from V \W to W minus p times

the number of arcs from W to V \W . That is, γW =
∑

i6∈W,j∈W aij − p
∑

i∈W,j 6∈W aij, where

aij = 1, if (i, j) ∈ A; 0 otherwise.

IP Formulation

For j ∈ V , we define πj ∈ {0, 1} as follows:

πj =





1, node j belongs to the elite group W ;

0, otherwise.

For (i, j) ∈ A, we define xij ∈ {0, 1} and yij ∈ {0, 1} as follows:

xij =





1, arc (i, j) is from V \W to W ;

0, otherwise.

yij =





1, arc (i, j) is from W to V \W ;

0, otherwise.

An IP formulation for SCEGPP is as follows:

max γW =
∑

(i,j)∈A

(xij − pyij)

s.t. πi − πj = yij − xij, ∀ (i, j) ∈ A

yij + xij ≤ 1, ∀ (i, j) ∈ A

∑
i∈V

πi ≤ k,
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xij, yij ∈ {0, 1}, ∀ (i, j) ∈ A

πi ∈ {0, 1}, ∀ i ∈ V

If node i ∈ W and node j ∈ V \W (i.e., πi = 1, πj = 0), then the first constraint enforces

that yij = 1, xij = 0. Similarly, if node i ∈ V \W and node j ∈ W (i.e., πi = 0, πj = 1), then

yij = 0, xij = 1. For πi = πj = 0 or πi = πj = 1, we have yij − xij = πi − πj = 0 and, hence,

yij = 0, xij = 0 due to the second constraint. Thus, in the objective function, (xij − pyij)

represents the contribution of arc (i, j) to γW : (i) if arc (i, j) is from V \W to W , then the

contribution is 1, (ii) if arc (i, j) is from W to V \W , then the contribution is −p, (iii) if arc

(i, j) is from W to W (or from V \W to V \W ), then the contribution is 0. The following

theorem discusses the computational complexity of SCEGPP.

Theorem 2.3.4 The decision problem corresponding to SCEGPP is strongly NP-Complete.

Proof: We again use BBP (Section 2.3.1) in our reduction. The notation is as defined

in Section 2.3.1. The construction of the graph G′ is exactly the same as in the proof of

Theorem 2.3.3. The decision question, however, is different.

DECISION QUESTION: Let t = km+(n−k)+n2, p = n4 +3n3 +3n2, and D = kn3 +kn2.

Does there exist an elite group W in G′ such that |W | ≤ t, and γW ≥ D?

The decision problem is clearly in class NP. It is easy to see that the decision question has

an affirmative answer if and only if the original graph G contains a balanced biclique of size

2k (i.e, |U1| = |V1| = k).

=⇒ This part is exactly as same as in the proof of Theorem 2.3.3.
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⇐= Suppose W is an elite group in G′ with |W | ≤ t and γW ≥ D.

Claim 2.3.5 In G′, there does not exist any arc from W to W .

Proof: If there exists at least one arc from W to W , then γW ≤ ∑
(i,j)∈A xij − p. Since

∑
(i,j)∈A xij ≤ |G′| ≤ p, we have γW ≤ 0, which contradicts γW ≥ D.

With Claim 2.3.5, the remainder of the argument is the same as in the proof of Theorem 2.3.3.

2.3.2 The Portal Problem (PP)

Given a connected, undirected graph G(V, E) and a positive integer k, recall from Section 2.2

that an optimal portal is a set Q ⊆ V, |Q| ≤ k such that r(Q) is maximized.

As mentioned earlier, a portal is a natural extension to a set-based measure of the notion

of Betweenness Centrality (BC) for a single node. For k = 1, PP reduces to the well-known

Betweenness Centrality Problem, which is polynomially solvable (Everett and Borgatti 1999).

Thus, PP is polynomially solvable when k = 1. However, for higher values of k, finding an

optimal solution is often a challenging task. The primary difficulty is that the measure r(Q)

is non-additive. In other words, BCs of two distinct nodes in Q cannot, in general, be simply

added when computing r(Q). This is obvious, since a specific path between nodes i and j,

i, j ∈ V \Q, with two or more internal nodes in Q is counted only once in the computation

of r(Q).

We first show that PP and ESPP are strongly NP-hard. An efficient, polynomial-time

algorithm for obtaining an optimal solution on general graphs is, therefore, unlikely. Then,



www.manaraa.com

29

we address special graphs (bicliques and balanced and full d-trees). Finally, we analyze a

heuristic for general trees.

Proof of Hardness of PP and ESPP

Puzis et al. (2007) use the Vertex Cover Problem (Garey and Johnson 1979) to show the

hardness of the non-normalized measure BC(Q) (Section 2.2.2), which is the numerator of

our measure r(Q). Furthermore, given G and k, the variant considered in Puzis et al. (2007)

requires that the solution has exactly k nodes. The strongly NP-Complete problem which

we use in our reduction is the Independent Set Problem (Garey and Johnson 1979).

Independent Set Problem (ISP)

Instance. A connected, undirected graph G = (V, E); a positive integer k ≤ |V |.

Solution. A set of nodes, I ⊆ V, |I| ≥ k, such that no two nodes in I are connected by an

edge in E.

Theorem 2.3.5 The decision problem corresponding to PP is strongly NP-Complete.

Proof: Given an arbitrary instance of ISP, specified by G(V, E), we consider the following

decision problem:

DECISION QUESTION: Does there exist a portal Q ⊆ V in G(V, E) such that |Q| ≤ |V |−k

and r(Q) ≥ 1?

Note that the decision problem is clearly in class NP. We now show that ISP has an affirmative

answer if and only if the above decision question has an affirmative answer.
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Suppose I∗ is an independent set in G with at least k∗ nodes. Let Q∗ = V \I∗. Then,

|Q∗| ≤ |V | − k∗. From the definition of an independent set, it follows that all paths in

G between any two nodes in I∗ have at least one node in Q∗ as an internal node. Thus,

r(Q∗) = 1 and the decision question has an affirmative answer. Conversely, if there exists

Q ⊆ V with |Q| ≤ |V | − k and r(Q) ≥ 1, then the set V \Q is an independent set of at least

k nodes.

Corollary 2.3.6 The decision problem corresponding to ESPP is strongly NP-Complete.

Results on Specific Families of Graphs

We now discuss two specific families of graphs: Bicliques and Balanced and Full d-Trees.

Bicliques:

Let G = (U ∪ V, E) be a biclique: n1 = |U | ≤ |V | = n2 and u ∈ U, v ∈ V implies that

{u, v} ∈ E. The size of the biclique is n1 + n2. Let Q1, Q2 ⊆ U ∪ V . If |Q1 ∩ U | = |Q2 ∩ U |

and |Q1 ∩ V | = |Q2 ∩ V |, then BC(Q1) = BC(Q2). Thus, for Q ⊆ U ∪ V , the objective

function r(Q) depends only on two numbers: k1 = |Q∩U | and k2 = |Q∩V |. Theorem 2.3.7

(resp., Corollary 2.3.11) provides an optimal solution to PP (resp., ESPP).

U V

u
v1

u2

u1

v2

v1

u2

u3

v3

v4

A portal of 
size 2 in a 
biclique

Figure 2.8. Optimal Portal in a Biclique.
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Theorem 2.3.7 Let G = (U ∪V, E) be a biclique with n1 = |U | ≤ |V | = n2. Let Q ⊆ U ∪V .

Let k1 = |Q ∩ U |, k2 = |Q ∩ V |. Then,

(i) For 1 ≤ k ≤ n1− 1, any set Q which satisfies k1 = k and k2 = 0 is an optimal solution

of PP.

(ii) For k ≥ n1, then Q = U is an optimal solution of PP.

Proof: The result of Theorem 2.3.7 follows from the proofs of Lemmas 2.3.8, 2.3.9, and

2.3.10.

Lemma 2.3.8 Let G = (U ∪ V, E) be a biclique with n1 = |U | ≤ |V | = n2. If k ≥ n1, then

Q = U is an optimal solution of PP.

Proof: Let Q = U . Since k ≥ n1, we have |Q| = |U | = n1 ≤ k. Let G′(Q) denote the induced

subgraph obtained by removing all the nodes in Q from G. Thus, we have G′(Q) = V . For

any two nodes in V , there exist n1 shortest paths (in G) between them. Each shortest path

has exactly one node in U as an internal node. Thus,

BC(Q) =



|V |

2


 n1

n1

=




n2

2


 .

Also,



n1 + n2 − |Q|

2


 =




n2

2


 .

Therefore, r(Q) = 1 and Q = U is an optimal solution of PP.

To obtain an optimal solution of PP for 1 ≤ k ≤ n1 − 1, we first obtain an optimal solution

of the corresponding instance of ESPP in the following lemma.
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Lemma 2.3.9 Let G = (U ∪ V, E) be a biclique with n1 = |U | ≤ |V | = n2. For 1 ≤ k ≤

n1 − 1, any set Q with k1 = |Q ∩ U | = k and k2 = |Q ∩ V | = 0 is an optimal solution of

ESPP.

Proof: Since n1, n2 and k are given, the value




n1 + n2 − k

2


 is fixed. Thus, maximizing

r(Q) is equivalent to maximizing BC(Q). We have

BC(Q) =




n1 − k1

2


 k2

n2

+




n2 − k2

2


 k1

n1

Using k2 = k − k1, we obtain

BC(Q) =




n1 − k1

2


 k − k1

n2

+




n2 − (k − k1)

2


 k1

n1

=
n1(n1 − k1)(n1 − k1 − 1)(k − k1) + n2(n2 − k + k1)(n2 − k + k1 − 1)k1

2n1n2

Let g(k1) represent the numerator of BC(Q). Thus, g(k1) = n1(n1 − k1)(n1 − k1 − 1)(k −

k1)+n2(n2−k +k1)(n2−k +k1− 1)k1. In the following claim, we show that for 0 ≤ k1 ≤ k,

g(k1) reaches its maximum at k1 = k.

Claim 2.3.6 Let n1 ≤ n2 and 1 ≤ k ≤ n1 − 1. For 0 ≤ k1 ≤ k, g(k1) = n1(n1 − k1)(n1 −

k1 − 1)(k − k1) + n2(n2 − k + k1)(n2 − k + k1 − 1)k1 reaches its maximum at k1 = k.

Proof: By defining a = n2 − n1, b = n1(2n1 + k − 1) + n2(2n2 − 2k − 1), c = n1(−n2
1 −

2kn1 + n1 + k) + n2(n
2
2 − 2kn2 − n2 + k2 + k), and e = kn2

1(n1 − 1), we can rewrite g(k1) as

ak3
1 + bk2

1 + ck1 + e. Although k1 can only take integral values, it is convenient to assume

g(k1) as a continuous function of k1 (0 ≤ k1 ≤ k) for the purpose of this proof. We have two

forms of g(k1) based on the value of a.
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(i) For n1 < n2, we have a > 0. Thus, g(k1) is a cubic function of k1. Let g′(k1)

represent the first-order derivative of g(k1) with respect to k1. Thus, g′(k1) = dg(k1)
dk1

=

3ak2
1 + 2bk1 + c has at most two real roots, which correspond to the critical points of

g(k1). Since a > 0, g′(k1) is convex. Let ∆ = (2b)2− 4(3a)c represent the discriminant

of g′(k1).

(1) For ∆ ≤ 0, we have g′(k1) ≥ 0. Thus, g(k1) monotonically increases with k1 and

reaches its maximum at k1 = k for 0 ≤ k1 ≤ k.

(2) For ∆ > 0, g′(k1) has two real roots: k̄1 and k̂1. Without loss of generality,

we assume k̄1 < k̂1. Thus, k̄1 = −2b−√∆
6a

, k̂1 = −2b+
√

∆
6a

. Let g′′(k1) = d2g(k1)

dk2
1

=

6ak1 + 2b. Then, we have g′′(k̄1) = −√∆ < 0, g′′(k̂1) =
√

∆ > 0. Thus, g(k1)

achieves its local maximum at k̄1 and achieves its local minimum at k̂1. Therefore,

the maximum of g(k1) for 0 ≤ k1 ≤ k has three possible values: g(0), g(k), or

g(k̄1) (if 0 ≤ k̄1 ≤ k).

Since k ≤ n1 − 1 < n2 − 1, we have 2n2 − 2k − 1 > 0. Since n1 > 0, n2 > 0, and

2n1 + k − 1 > 0, we have b = n1(2n1 + k − 1) + n2(2n2 − 2k − 1) > 0. Since

a > 0 and b > 0, we have k̄1 = −2b−√∆
6a

< 0. Thus, since k̄1 is outside the range

[0, k], the maximum of g(k1) for 0 ≤ k1 ≤ k is either g(0) or g(k). Also, we have

g(0) = n2
1(n1 − 1)k and g(k) = n2

2(n2 − 1)k. Since n1 < n2, we have g(0) < g(k).

Therefore, for 0 ≤ k1 ≤ k, g(k1) reaches its maximum at k1 = k.

(ii) If n1 = n2, we have a = 0, b = n1(4n1 − k − 2), c = n1(−4kn1 + k2 + 2k), and

e = n2
1(n1 − 1)k. Since k ≤ n1 − 1 and n1 ≥ 1, we have 4n1 − k − 2 > 0. Thus,
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b = n1(4n1− k− 2) > 0. Therefore, g(k1) = bk2
1 + ck1 + e is a quadratic function of k1.

Since b > 0, g(k1) is convex. Thus, the maximum of g(k1) for 0 ≤ k1 ≤ k is either g(0)

or g(k). Also, we have g(0) = n2
1(n1 − 1)k = g(k). Therefore, for 0 ≤ k1 ≤ k, g(k1)

reaches its maximum at k1 = k.

This completes the proof of Claim 2.3.6.

Thus, given an instance of ESPP with n1, n2, and k, the function g(k1) reaches its maximum

at k1 = k. Consequently, r(Q) is maximized for any set Q with k1 = k, k2 = 0. This

completes the proof of Lemma 2.3.9.

Lemma 2.3.9 provides an optimal solution of ESPP for 1 ≤ k ≤ n1 − 1. In our next result,

we show that the optimal value r(Q) of ESPP increases with |Q| for 1 ≤ |Q| ≤ n1 − 1.

Thus, given k, 1 ≤ k ≤ n1 − 1, an optimal solution of PP can be obtained by solving the

corresponding instance of ESPP.

Lemma 2.3.10 Let G = (U∪V, E) be a biclique with n1 = |U | ≤ |V | = n2. Let Q∗ denote an

optimal solution of an instance of PP defined by G and a positive integer k, 1 ≤ k ≤ n1− 1.

Then, |Q∗| = k. Consequently, an optimal solution of PP can be obtained by solving the

instance of ESPP corresponding to G and k.

Proof: Let Q̂ be an optimal solution of an instance of ESPP defined by G and a positive

integer k̂. Thus, we have |Q̂| = k̂. We next show r(Q̂) increases with k̂. From Lemma 2.3.9,

we have k̂1 = |Q̂ ∩ U | = k̂ and k̂2 = |Q̂ ∩ V | = 0. Thus,

BC(Q̂) =




n1 − k̂

2


 0

n2

+




n2

2


 k̂

n1

=
n2(n2 − 1)k̂

2n1

,
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r(Q̂) =
BC(Q̂)


n1 + n2 − k̂

2




.

For 1 ≤ k̂ ≤ n1 − 1, the value BC(Q̂) increases with k̂, and




n1 + n2 − k̂

2


 decreases

with k̂. Thus, r(Q̂) increases with k̂. Since Q∗ is an optimal solution of an instance of PP

defined by G and k, we have r(Q∗) = max1≤k̂≤k r(Q̂). Since r(Q̂) increases with k̂, we have

|Q∗| = k, |Q∗ ∩ U | = k, and |Q∗ ∩ V | = 0. The result follows.

Together, Lemmas 2.3.8, 2.3.9, and 2.3.10, complete the proof of Theorem 2.3.7.

We also summarize the solution of ESPP.

Corollary 2.3.11 Let G = (U ∪ V, E) be a biclique with n1 = |U | ≤ |V | = n2. Let

Q ⊆ U ∪ V . Let k1 = |Q ∩ U |, k2 = |Q ∩ V |.

1. For 1 ≤ k ≤ n1 − 1, any set Q which satisfies k1 = k and k2 = 0 is also an optimal

solution of ESPP.

2. For n1 ≤ k ≤ n1 + n2 − 1, then any set Q which satisfies k1 = n1 and k2 = k − n1 is

an optimal solution of ESPP.

Balanced and Full d-Trees:

Given a tree G(V, E) and Q ⊆ V , let G′(Q) denote the induced subgraph obtained by

removing all the nodes in Q from G. In general, G′(Q) is a forest with disjoint trees as

its connected components. Since G is a tree, there is a unique path in G connecting any

two distinct nodes s and t in V \Q; thus, σst = 1 (see Section 2.2.2). We first define some
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notation for a general tree G(V, E):

n: the number of nodes in G (i.e., n = |V |).

k: the number of nodes in Q (i.e., k = |Q|).

l: the number of connected components in G′(Q).

Ai: the ith connected component in G′(Q), i = 1, 2, · · · , l.

ai: the size (i.e., the number of nodes) of component Ai, i = 1, 2, · · · , l.

Consider a connected component, say Ai, of G′(Q). In G, there is a unique path from any

node in Ai to each node in every other connected component in G′(Q). Thus,

BC(Q) =
∑

s6∈Q,t6∈Q,s6=t

σst(Q)

σst

=
∑

1≤i<j≤l

aiaj (2.1)

Since
∑l

i=1 ai = |V | − |Q| = n− k, we have

BC(Q) =
(n− k)2 −∑l

i=1 a2
i

2
(2.2)

Thus, for fixed n and k, maximizing BC(Q) is equivalent to minimizing
∑l

i=1 a2
i . We next

illustrate the solution of this problem for balanced and full d-trees.

On a rooted balanced and full d-tree, each node (except the leaf nodes) has d distinct

successors, each node (except root) has a unique predecessor. All leaf nodes have the same

distance (height) to the root node. For a d-tree, if we remove any node other than the root

node and leaf nodes, we will add d more connected components into the remaining graph. So

if we remove k nodes from a d-tree, we will have at most l = dk + 1 connected components

left.

Theorem 2.3.12 Let G be a balanced and full d-tree with height h ≥ 2. For an instance of

PP defined by G and a positive integer k, let t = min{dh/2e, blogd kc} and let Q̄ denote the
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A portal of size 4 
in a balanced 
and full binary 
tree of height 4

Figure 2.9. Optimal Portal in a Balanced and Full Binary (d=2) Tree.

set of nodes on the tth level of G. Then, Q̄ provides an asymptotically maximal solution to

PP, with r(Q̄) ≥ (1− 1
dt+1 ).

Proof: First, since the tth level of a balanced and full d-tree has dt nodes, |Q̄| = dt ≤ k.

Note that G′(Q̄) has exactly l = d|Q̄|+ 1 connected components. Of these, we have (i) d|Q̄|

identical components, say Ai, i = 1, 2, . . . , d|Q̄|, each with dh−t−1
d−1

nodes. Thus, a1 = a2 =

· · · = ad|Q̄| =
dh−t−1

d−1
, and (ii) one component, say Al, with dt−1

d−1
nodes. Thus, al = dt−1

d−1
.

From Equation 2.1, we have

BC(Q̄) =
∑

1≤i<j≤l

aiaj

= d|Q̄|ala1 + a2
1




d|Q̄|

2




= dt+1dt − 1

d− 1

dh−t − 1

d− 1
+

(dh−t − 1)2

(d− 1)2

dt+1(dt+1 − 1)

2

=
dt+1(dh−t − 1)(dh+1 − dh−t − dt+1 + 2dt − 1)

2(d− 1)2
.

Also,




n− |Q̄|

2


 =




dh+1−1
d−1

− dt

2


 = (dh+1−dt+1+dt−1)(dh+1−dt+1+dt−d)

2(d−1)2
.
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Thus,

BC(Q̄)− (1− 1

dt+1
)




n− |Q̄|

2




=
1

2dt+1(d− 1)2
[dh(dt+3 − dt+2 + 2dt+1 − d2 − d)

+d− dt + d2t − d2t+1 + 2d2t+2 − d2t+3 − d3t+1]

Since t = min{dh/2e, blogd kc} and dh/2e ≤ (h+1)/2, we have t ≤ dh/2e ≤ (h+1)/2. Thus,

dh ≥ d2t−1. Since (dt+3 − dt+2 + 2dt+1 − d2 − d) ≥ 0, we have

BC(Q̄)− (1− 1

dt+1
)




n− |Q̄|

2


 ≥ 1

2dt+1(d− 1)2
[d2t−1(dt+3 − dt+2 + 2dt+1 − d2 − d)

+d− dt + d2t − d2t+1 + 2d2t+2 − d2t+3 − d3t+1]

=
(dt − d)(d2t(d(d− 2) + 2)− 1)

2dt+1(d− 1)2

≥ 0

Thus,

r(Q̄) =
BC(Q̄)


n− |Q̄|

2




≥ (1− 1

dt+1
).

Since t = min{dh/2e, blogd kc}, the ratio r(Q̄) → 1 with an increase in the size of G and k.

Thus, the resulting family of solutions Q̄ can be referred to as an asymptotically maximal

family. Note that the solution Q̄ is not necessarily optimal. Thus, in cases where Q̄ is not

optimal, there can exist a solution that is superior to Q̄.
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Remark 2: The solutions of PP and ESPP on paths, cycles, and cliques, are straightforward

to obtain. Therefore, these results are listed without proofs as follows.

Theorem 2.3.13 Let G be a path v1-v2-. . .-vn and consider an instance of ESPP specified

by G and k. Let µ = n−k
k+1

, c = n−k−(k+1)bµc. Then, Q∗ is an optimal solution of ESPP if

and only if G′(Q∗) has exactly c connected components of size bµc+1 and exactly (k +1− c)

connected components of size bµc.

Thus, given an explicit description of the path v1-v2-. . .-vn and a positive integer k, an optimal

solution of ESPP is Q∗ = {vi(bµc+2), i = 1, 2, · · · , c} ∪ {vc(bµc+2)+j(bµc+1), j = 1, 2, · · · , k − c}.

The optimal objective function value is r(Q∗) = BC(Q∗)/




n− k

2


, where

BC(Q∗) =
(n− k)2 − c(bµc+ 1)2 − (k + 1− c)(bµc)2

2
.

An optimal solution of PP is also easy to obtain: we simply solve ESPP for each k̄ ≤ k.

Since k ≤ n, this requires time polynomial in the size of the input (assuming that the path

is explicitly specified in the input).

Theorem 2.3.14 Let G be a cycle v1-v2-. . .-vn-v1 and consider an instance of ESPP speci-

fied by G and k. Let µ = n−k
k

, c = n− k − kbµc. Then, Q∗ is an optimal solution of ESPP

if and only if G′(Q∗) has exactly c connected components of size bµc+ 1 and exactly (k − c)

connected components of size bµc.

Thus, given an explicit description of the cycle v1-v2-. . .-vn-v1 and a positive integer k ≥ 2,

an optimal solution of ESPP is Q∗ = {vi(bµc+2), i = 1, 2, · · · , c} ∪ {vc(bµc+2)+j(bµc+1), j =
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1, 2, · · · , k − c}. The optimal objective function value is r(Q∗) = BC(Q∗)/




n− k

2


,

where

BC(Q∗) =
(n− k)2 − c(bµc+ 1)2 − (k − c)(bµc)2

2
.

We can easily obtain an optimal solution of PP by solving ESPP for each k̄ ≤ k. Since

k ≤ n, this requires time polynomial in the size of the input (assuming that the cycle is

explicitly specified in the input).

Let G = (V, E) be a clique and let Q ⊆ V . For any two nodes s, t ∈ V \Q, the unique

shortest path in G between s and t is of length 1 and exists in G′(Q). Thus, no shortest

path between any two nodes in V \Q has an internal node in Q. Thus, σst(Q) = 0. It follows

that r(Q) = BC(Q) ≡ 0 for any Q ⊆ V . In other words, any subset of nodes is an optimal

solution for PP and ESPP.

General Trees

An important question that arises naturally is that of the solution of PP on a general tree.

The tree structure occurs frequently in real-world social networks. Wein (2009) describes

the milk supply chain as a tree. The author argues that for a potential terrorist attack, it is

enough to introduce a small amount of toxin (botulinum) at a few key nodes of the tree. We

believe that such nodes can be identified by finding an optimal or near-optimal portal in the

tree. In Perer and Wilson (2007), the authors discuss the underground distribution network

of steroids among players of Major League Baseball. Investigators have used this network

to determine the role of each individual in the distribution of steroids. Again, knowledge



www.manaraa.com

41

of a good portal in this network should help identify key members. Interfirm collaboration

networks, studied in Schilling and Phelps (2007), are approximately trees. In their search for

firms with a higher innovative output, the authors find a set of nodes that is a near-optimal

portal. In Hanaki et al. (2007), the authors argue that locally, a large and sparse random

network often resembles a pure branching tree.

The computational complexity of PP for a tree is an open problem. We now present a

simple heuristic (Theorem 2.3.15) to find a portal in a tree and obtain a lower bound on its

performance. To describe the heuristic, we need the following labeling procedure:

Labeling Procedure

Input: A tree G(V, E).

Initialization: Let i = 0.

Step 1: Select all the leaf nodes of G, label them as being on Level i, and include them in

set S(i). Let G = G\S(i).

Step 2: If G = ∅, terminate; otherwise, let i = i + 1 and go to Step 1.

We record the highest level we get in this labeling procedure as h, and refer to it as the

height of the tree. Let n[j] = |S(j)|, the number of nodes in Level j. It is easy to see that

n[0] ≥ n[1] ≥ n[2] ≥ . . . ≥ n[h] and n[h] ∈ {1, 2}.

Theorem 2.3.15 Let G be a tree with height h ≥ 2. For an instance of PP defined by

G(V, E) and a positive integer k ≥ 2,

1. If n[1] ≤ k, then set t̄ = 1.
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2. If n[1] > k, then set t̄ such that n[t̄− 1] > k, n[t̄] ≤ k.

Let t = max{dh/2e, t̄}. Let Q̄ denote the set of nodes on the level t of G. Then, Q̄ provides

a solution to PP with r(Q̄) ≥ b(b−1)t2+2bt(h−t)
(n−b)(n−b−1)

, where b = n[t] and n = |V |. Moreover, this

bound is tight.

Proof: Since Q̄ includes all the nodes on level t of G, we have |Q̄| = n(t). Since t =

max{dh/2e, t̄} ≥ t̄, we have n(t) ≤ n[t̄] ≤ k. Thus, |Q̄| ≤ k. Note that G′(Q̄) has l ≥ b + 1

connected components. Of these, we have (i) at least b components, say Ai, i = 1, 2, . . . , b,

each with at least t nodes: from level 0 to level t−1, Ai has at least one node from each level.

Thus, ai = |Ai| ≥ t, i = 1, 2, . . . , b, and (ii) one component, say Al, with at least h− t nodes:

from level t + 1 to level h, Al has at least one node from each level. Thus, al = |Al| ≥ h− t.

From (2.1) defined above, we have

BC(Q̄) =
∑

1≤i<j≤l

aiaj

≥
∑

1≤i<j≤b

aiaj +
∑

1≤i≤b

aial

≥




b

2


 t2 + bt(h− t)

=
b(b− 1)

2
t2 + bt(h− t).

Also,
(

n−|Q̄|
2

)
= (n−b)(n−b−1)

2
. Thus, we have

r(Q̄) =
BC(Q̄)(

n−|Q̄|
2

) ≥ b(b− 1)t2 + 2bt(h− t)

(n− b)(n− b− 1)
.

To show the tightness of the bound, let G be a path of length 4. Thus, n = 5, h = 2,

n[0] = n[1] = 2, n[2] = 1. For k = 2, if we apply the heuristic, we have Q̄ as all the nodes
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on Level 1 of G. Then, t = 1, b = n[1] = 2, b(b−1)t2+2bt(h−t)
(n−b)(n−b−1)

= 1, which implies that Q̄ is an

optimal solution to PP on G.

When G is a balanced and full d-tree, the procedure in Theorem 2.3.15 is the same as the

one in Theorem 2.3.12, which was shown to provide an asymptotically maximal solution to

PP.

2.4 Conclusions and Future Research Directions

The ability to find useful structures in social networks will undoubtedly benefit their users

as well as other stakeholders – the businesses that use these networks and the sites that host

them. Unlike the internet, structural search on social networks is set-based and offers a rich

variety of interesting combinatorial optimization problems. In this paper, our effort is to

identify and analyze specific instances of such problems. We consider two problems – the

Elite Group Problem (EGP) and the Portal Problem (PP) – derived, respectively, from the

notions of influence and centrality. We demonstrate the relevance of these problems on a

variety of social networks and show the following results: (i) the basic EGP is polynomially

solvable while its size-constrained variant is strongly NP-hard. We also show the hardness of

a penalty-based relaxation of the size-constrained version. (ii) PP is strongly NP-hard. We

discuss the solution of PP on several special networks – bicliques, balanced and full d-trees,

paths, cycles, and cliques – and propose a heuristic for general trees.

In the industry, the focus, thus far, has been on developing “social search engines” to

search social media and user-generated content, e.g., Social Mention (http://www.social
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mention.com), Twitter (http://search.twitter.com), and Delver (http://www.delver.com).

Some networks do facilitate simple search, e.g., MySpace allows a user to find other users

with similar interests. However, to our knowledge, there is little or no sophisticated structural

search available to ordinary users of social networks. Since this type of search is typically

combinatorial in nature, the resulting problems are expected to be challenging. One idea

is to provide an easy-to-use modeling language to enable members to specify complex, con-

strained search and then use sophisticated solvers (e.g., CPLEX) or heuristics to solve the

resulting problems. Another possibility is to develop a repository – that could evolve over

time – of efficient algorithms for the typical combinatorial searches that users specify. The

notions of an elite group and a portal studied in this paper are extensions to set-based

measures of, respectively, indegree and betweenness centralities for individual members of a

social network. Similarly, useful structures based on extensions of other popular centralities,

e.g., the more general degree centrality or closeness centrality (Carrington et al. 2005), could

also be investigated. Applications of such set-based measures have been discussed for several

social networks (see, e.g., Cattani and Ferriani 2008, Owen-Smith et al. 2002, Morselli and

Giguere 2006).

The ideas of search developed in this paper naturally flow into other operational problems

of interest. One such problem is targeted online advertising. For example, in the Twitter

network, it is possible for one member to “follow” another, suggesting a directed link in the

network. The identification of an elite group within Twitter could, therefore, be used to

target promotional material to members of this group. For instance, an advertisement could

be targeted using keywords exchanged by two members during a conversation on Twitter.



www.manaraa.com

CHAPTER 3

VALUE OF LOCAL CASH REUSE: INVENTORY MODELS FOR MEDIUM-SIZE

DEPOSITORY INSTITUTIONS UNDER THE NEW FEDERAL RESERVE POLICY 1

3.1 Synopsis

Unlike most consumer products, a significant portion of physical cash is recirculated and

reused in an economy. The Federal Reserve System (Fed) of the United States provides

currency services (e.g., separating cash into notes that are fit and unfit for recirculation)

to depository institutions (DIs; e.g., banks) who, in turn, meet the public’s demand for

cash. Over the years, the Fed’s analysis has suggested that DIs are relying on the Fed’s cash

processing services to recirculate a substantial amount of physical cash that the DIs should

have recirculated themselves (Federal Reserve 2003, 2006). As identified by the Fed, it is

often the case that cash deposited to the Fed by a DI is reordered by the same DI in the

same denomination within one business week. From the point of view of a DI, this practice

– referred to as cross-shipping – made sense (prior to 2007) since the Fed’s cash processing

services were free. Therefore, it was convenient and economical for a DI to let the Fed clean

the cash, i.e., separate it into fit and unfit notes. This practice, however, progressively and

significantly increased the Fed’s expenses to process cash and manage its currency circulation

1Reprinted by permission, Yunxia Zhu, Milind Dawande, Chelliah Sriskandarajah, Value
of Local Cash Reuse: Inventory Models for Medium-Size Depository Institutions under the New
Federal Reserve Policy, Manufacturing & Service Operations Management, Volume 13, Number 4,
2011, Copyright (2011), the Institute for Operations Research and the Management Sciences, 7240
Parkway Drive, Suite 300, Hanover, Maryland 21076 USA.

45



www.manaraa.com

46

operations (Blacketer and Evetts 2004). With the aim of encouraging DIs to “locally” clean

and reuse cash to ultimately reduce the societal cost of providing currency to the public, the

Fed introduced its new currency recirculation policy in July 2007. The details of the Fed’s

policy will be discussed in Section 3.1.1.

New Cash

Circulation of Cash

Used Cash

Unfit 
Cash

Fit-Sorting

R
eu

se

Unfit

Printed by the 
Bureau of 
Engraving and 
Printing for the 
Fed

Fit Cash

R
e

Fit
Fed Destroyed 

by the Fed

Figure 3.1. Life Cycle of Physical Cash.

In its physical form, cash can be classified into four categories (Figure 3.1). The Bureau of

Engraving and Printing (BEP) prints new cash on the Fed’s request. After its introduction

into the economy, this cash is referred to as used cash. Over time, the quality of used cash

deteriorates. Used cash that is deemed suitable to remain in circulation is referred to as fit

cash. The remainder is unfit cash, which is typically worn, soiled, or torn, and is destroyed

by the Fed. In this paper, we only address the management of physical notes. Coins are not

considered since they are less perishable, have lesser value, and the guidelines and challenges

in managing their use are markedly different from those of notes. We now describe the

structure of the U.S. cash supply chain.

3.1.1 The Closed-Loop Cash Supply Chain

As in Rajamani et al. (2006), it is convenient to describe the cash supply chain as a closed-

loop supply chain using its 4-P components: Product, Players, Process, and Policy.
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• Product:

The Fed’s new currency recirculation policy applies only to the $10 and $20 notes

(Federal Reserve 2006). Between these two denominations, $20 notes form an over-

whelmingly dominant portion of the currency in circulation because of their heavy use

in ATMs. Consequently, DIs are primarily interested in recirculating $20 notes (Fed-

eral Reserve 2006). Our analysis, therefore, assumes currency of a single denomination,

namely $20. Both the transportation and transactions of cash between DIs and the

Fed occur in integer multiples of cash bundles, where a bundle is 1000 notes of the

same denomination.

• Players & Process:

The Fed acts as the exclusive wholesaler, that orders the production of cash from

the BEP and controls the release of cash into the economy through DIs. The DIs

act as retailers, providing cash to end customers and collecting deposits from them.

Individuals and Commerce are the end customers, who deposit used cash to and/or

withdraw fit cash from the DIs through various channels such as ATMs, bank branches,

and businesses. Besides these three primary players, third-party logistic providers

(3PLPs) such as Brink’s, Inc., Dunbar Armored, and Loomis, Fargo & Co., also play

an important role in this supply chain. In addition to collecting cash and transporting

it between the DIs and the Fed, the 3PLPs are also involved in the processing of cash,

e.g., counting and sorting cash into fit and unfit notes. Before July 2007, the Fed

accepted deposits of used cash from DIs, fit-sorted that currency (i.e., separated it into

fit and unfit cash), removed unfit cash from circulation, and provided fit cash to DIs.
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The DIs simply sorted the collected used cash by denomination and then forwarded it

to the Fed. After the implementation of the Fed’s policy, in an ideal situation, the DIs

locally fit-sort the used cash and use the resulting fit cash to satisfy (partially or fully)

their customers’ demand. From the systemic view, the local reuse of fit cash by DIs can

be an influential practice because a significant fraction – about 65-75%, based on the

Fed’s documentation (Federal Reserve 2010b) and our conversations with a third-party

provider – of used cash is fit cash. Thus, a major percentage of the movement of used

cash (resp., fit cash) to (resp., from) the Fed can be avoided and, consequently, help

in supporting the Fed’s eventual goal of minimizing the cost of providing currency to

the public. Our analysis in this paper assumes that the percentage of fit cash in the

used cash is 75%.

The inventory models in this paper specifically capture the operations of DIs that

handle a medium volume of currency. Such DIs face a weekly demand of fit cash that

is typically between 1000 to 2000 bundles. The weekly demand at DIs that handle large

volumes typically averages more than 5000 bundles (Dawande et al. 2010). Due to the

relatively low volume of physical cash, medium DIs may prefer to engage the services

of 3PLP for fit-sorting and managing custodial inventory (to be defined shortly). This

has been anticipated by the Fed as well (Federal Reserve 2003). Furthermore, due

to the relatively high percentage variation (as compared to large DIs) in the weekly

transaction of cash, such DIs are expected to engage the services of the 3PLP on an

as-required basis (as opposed to a daily or weekly service, which is the typical case

with large DIs). In turn, since service requests from such a DI can be irregular, a
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3PLP typically uses a fixed-fee structure: a fixed-cost for ordering transportation,

a setup cost for fit-sorting in addition to a per-bundle fit-sorting cost, and a setup

cost for withdrawing cash from custodial inventory. Since the deposit (if any) into

custodial inventory occurs immediately after fit-sorting (for which a fee is charged),

3PLPs typically do not include a separate fee for such deposits.

• Policy:

As mentioned earlier, DIs had been overusing (prior to 2007) the cash processing

services of the Fed via the practice of cross-shipping. There were two main reasons for

DIs to cross-ship. First, the cost of fit-sorting – regardless of whether the DI invests

in the infrastructure itself or uses a 3PLP – discourages DIs from locally reusing cash:

it requires sophisticated labor and expensive machines. On the other hand, the Fed

provided this service for free. Second, for a DI, currency held on account at the Fed

can earn interest (by lending to other institutions via the Federal Funds Market),

while currency held in its own vault cannot. Therefore, holding cash incurs a cost of

lost opportunity for a DI. Hence, it was natural for a DI to minimize the volume of

cash held in its own vault while still satisfying customers’ demand. To achieve this

most efficiently, DIs frequently deposited/withdrew currency to/from the Fed, which

resulted in cross-shipping.

The concerns over cross-shipping, and the consequent increase in the amount spent

on its currency management operations, motivated the Fed to introduce the new cur-

rency recirculation policy in July 2007. The policy has two primary components: a

recirculation fee on cross-shipped currency and the custodial inventory program.
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Recirculation Fee: (Federal Reserve 2006) [Federal Reserve System] pro-

poses to establish a recirculation fee to provide further incentive for depos-

itory institutions to recirculate currency. Depository institutions would pay

the fee when they deposit [fit or non-fit-sorted cash] and order the same de-

nomination within the same business week [within] a Reserve Bank zone or

subzone. The fee would not be [activated by] deposits of. . . [unfit] cash.

Currently, the Fed charges a per-bundle cross-shipping penalty of $5. The volume of

cross-shipping is calculated as the lesser of (1) the fit cash in the used-cash deposit

and (2) the fit-cash withdrawal in the same week. Thus, the current recirculation fee

is the volume (i.e., number of bundles) of cross-shipping multiplied by five.

Custodial Inventory Program: (Federal Reserve 2006) A custodial in-

ventory enables an institution to transfer currency to the Federal Reserve

Bank’s books, but physically hold the currency within their secured facility,

thereby reducing the investment cost of holding currency long enough to

recirculate it to customers. The Custodial Inventory program is applicable

only to $10 and $20 notes.

The program encourages fit-sorting by DIs as the currency held in custodial inventory

is eligible to be lent to other institutions (and is, hence, an earning asset) and is more

readily available to meet customer demand than fit cash ordered from the Fed. Note

that the program does not allow a DI to deposit cash withdrawn from the Fed into

custodial inventory. In other words, only the cash that has been fit-sorted by the DI

is eligible to be deposited into custodial inventory.1
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Finally, it is important to note that a DI may choose to not fit-sort cash and, conse-

quently, not participate in the custodial inventory program. Instead, the DI can choose

to pay recirculation fee if it indulges in cross-shipping.

3.1.2 Literature Review and Our Contributions

There are three broad domains of research that are relevant to our work. We now briefly

review them and outline our contributions along each direction.

• Cash Supply Chain: Since the Fed’s recirculation policy has been recently imple-

mented, there are only a few studies that analyze the operational issues resulting from

the policy. Under the simplifying assumption that both the demand of fit cash and

the deposit of used cash satisfy week-to-week periodicity, both Geismar et al. (2007)

and Mehrotra et al. (2010) derive characteristics of optimal policies to manage the

inventory of cash. In these papers, periodicity means that the demand (resp., deposit)

of fit-cash (resp., used-cash) on Day i (say, Monday) is exactly the same every week.

The periodicity assumption is typically reasonable for (large) DIs that transact a high

volume of physical cash each week. Our models are more general in that they allow for

arbitrary demands over a finite planning horizon. Furthermore, the analyses in both

Geismar et al. (2007) and Mehrotra et al. (2010) are largely based on 2-week cyclic

1Apart from the description above, the Fed’s policy includes some other operational details
such as a de minimis exemption on cross-shipped cash. The de minimis exemption allows DIs to
cross-ship a small volume of cash per quarter without any penalty. Moreover, the Fed intends to
periodically review the de minimis exemption and may modify it at any time (Federal Reserve
2010c). Therefore, we have chosen not to include this exemption in our analysis. There are also
some additional rules on operating custodial inventory. These details are secondary in nature and
can be ignored for the purpose of assessing the overall impact of the Fed’s policy.
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policies. Such policies can be significantly suboptimal for medium-size DIs since such

DIs typically need to schedule irregular and infrequent service requests due to rela-

tively low volumes of cash transactions. Moreover, as mentioned earlier, our focus on

medium-size DIs necessitates a significantly different cost structure for transportation

and fit-sorting. We assume a fixed-cost for ordering transportation and a setup cost for

fit-sorting in addition to a per-bundle fit-sorting cost, while both Geismar et al. (2007)

and Mehrotra et al. (2010) assume simple per-bundle transportation and fit-sorting

costs.

Rajamani et al. (2006) discuss the Fed’s cash recirculation guidelines and describe the

U.S. cash supply chain as a closed-loop supply chain. Dawande et al. (2010) examine

the efficacy of the Fed’s policy to coordinate the cash supply chain.

Our Contributions: As mentioned above, the assumptions used – and the solutions

derived – in both Geismar et al. (2007) and Mehrotra et al. (2010) are not suitable

for medium-size DIs. Therefore, our attempt in this paper has been to study inven-

tory models that specifically capture the operations of medium-size DIs. We analyze

two multi-period models motivated by a DI’s aim to minimize the total cost incurred

in managing the inventory of cash over a finite planning horizon. From a technical

perspective, the non-periodicity and the different cost structure makes these models

fundamentally different from those in Geismar et al. (2007) and Mehrotra et al. (2010).

Therefore, a much more sophisticated analysis is required.

• Remanufacturing and Reuse: Guide (2000) surveys production planning and con-

trol activities at remanufacturing firms and discusses seven complicating characteristics
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with respect to traditional manufacturing firms. Among them, the issue of balancing

product returns (in our case, used-cash deposits by the customers) with demand (in

our case, fit-cash demand by the customers) is related to our analysis in this paper.

Guide and van Wassenhove (2001) develop a framework for analyzing the profitabil-

ity of reuse activities in remanufacturing. In our model, under the Fed’s new policy,

DIs self-select to implement the fit-sorting (i.e., reuse) activity if it is economically

attractive for them. For false-failure returns, Ferguson et al. (2006) design contracts

that incentivize a retailer to increase her effort and reduce the number of returns. We

expand on the conceptual similarity between false-failure returns and reuse of cash in

Section 3.7.

Our Contributions: Our work studies a novel closed-loop supply chain, namely the

supply chain of physical cash. The structure and operations of the cash supply chain,

e.g., the different classes of cash inventories (fit, used, and unfit cash) and the ability

to convert one type of cash (used cash) into another (fit cash) via fit-sorting, make

the setting quite unique. The Fed’s recirculation policy is an attempt to improve the

efficiency of the “reverse” channel in the cash supply chain.

• Lot-Sizing Models: The problems studied in this paper are related to the classical

lot-sizing literature. Since the literature in this domain is quite extensive, we avoid

providing a detailed review and, instead, only mention a few seminal studies: Wagner

and Whitin (1958), DeMatteis and Mendoza (1968), Balintfy (1964), and Joneja (1990).

Some excellent review papers in the lot-sizing domain are Robinson et al. (2009), Drexl

and Kimms (1997), Kuik et al. (1994), and Salomon et al. (1991).
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Our Contributions: We address new and challenging lot-sizing models that naturally

arise in a real-world setting. The uniqueness of our models stems from the combined

presence of the following aspects: (1) the different classes of cash inventories (used-, fit-

, and unfit cash) and the partial convertibility of used cash into fit cash, via the process

of fit-sorting, (2) the novel notion of cross-shipping, the non-linear definition of cross-

shipping penalty, and the Fed’s mechanism (i.e., a recirculation fee that is applicable

only in the presence of cross-shipping), and (3) the fixed/variable costs charged by the

secure-logistics provider together with the cross-shipping costs.

Given the Fed’s policy, a DI has two options: it can either (i) continue to rely on the Fed for

fit-sorting and incur cross-shipping penalties, or (ii) undertake fit-sorting and reuse (some or

all of) its used-cash deposits. The Basic Model (BM), developed in Section 3.2, captures a

DI’s mode of operations if it chooses the first option, i.e., it implements neither fit-sorting nor

the custodial inventory option. Our main result in this section is a polynomial-time dynamic

programming algorithm for BM. Section 3.3 discusses the reuse model (RM), in which a DI

chooses the second option and implements both the components of the Fed’s policy. We

prove that the decision problem corresponding to RM is NP-complete and formulate RM as

a mixed-integer program. In Section 3.4, via a comprehensive numerical study, we evaluate

the value of local reuse for a DI and develop insights into the impacts of the DI-specific

parameters and the Fed’s cross-shipping fee on the effective management of physical cash.

Our primary conclusion is that the saving for a DI from implementing the two components

of the Fed’s policy as well as the extent of local recirculation are substantial. Section 3.5

develops a rolling-horizon procedure to adapt the decisions from our models for real-time
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solutions. In Section 3.6, we compare a DI’s decisions under the Fed’s policy with those under

a socially-optimal mechanism. Finally, in Section 3.7, we summarize our results, discuss the

limitations of our analysis, and outline future research directions.

3.2 The Basic Model (BM)

The Basic Model (BM) captures a DI’s mode of operations if it implements neither fit-sorting

nor the custodial inventory option and, instead, chooses to incur the cross-shipping penalty.

We first provide a dynamic programming (DP) formulation of BM. Two important structural

results (Theorems 3.2.1 and 3.2.3) allow us to significantly reduce the complexity of solving

BM and show (in Theorem 3.2.5) that BM can be solved in time O(T 3), where T is the length

of the planning horizon. A generalized version of BM (referred to as BMg), in which the

initial and ending inventories of both fit-cash and used-cash can be arbitrary non-negative

values, is discussed in Section 3.2.4.

3.2.1 Problem Formulation

As mentioned earlier, our objective is to minimize – over a given planning horizon – a DI’s

total cost of managing the inventory of cash, which includes (1) the ordering cost charged by

the 3PLP, (2) the cross-shipping cost charged by the Fed and (3) the holding cost incurred

by the DI. Ideally, an infinite horizon setting would be most appropriate, since DIs do

operate under such an assumption. However, since (1) the periodicity assumption is not

appropriate for medium-size DIs and (2) our interest is in precisely specifying the optimal

weekly decisions under arbitrary (fit-cash) demands and (used-cash) deposits, we would need
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an explicit description of this data over an infinite horizon. On the other hand, considering

a single-period (i.e., one week) model defeats any attempt to plan over a reasonable horizon.

Therefore, as a tradeoff, we develop our solutions for an arbitrary finite horizon. In practice,

DIs typically have good visibility for about one quarter into the future. Therefore, a choice

of about 15 to 20 weeks would be appropriate for medium-size DIs to plan their decisions

on managing physical cash inventory.

The planning horizon consists of T periods. The Fed charges its cross-shipping penalty if both

withdrawal (of fit cash) and deposit (of used cash) occur within the same week. Therefore, it

is natural for a DI to plan its transportation activities (corresponding to these withdrawals

and deposits) on a per-week basis. For a medium-size DI, another auxiliary reason for

choosing the length of a period as one week is that the total daily volume of transactions

of physical cash is not high enough to warrant daily inventory decisions. As mentioned

earlier, due to the low volume of cash, 3PLPs typically prefer a fixed-fee structure, which

again supports the choice of per-week decisions on transportation, fit-sorting, and custodial

inventory.

Next, note that a DI maintains precise records of transactions – both deposits and with-

drawals – of physical cash for a considerable duration of time, for these are audited by the

Fed. Thus, a DI has access to accurate and rich data on deposits and withdrawals. For

medium-size DIs, while substantial week-to-week variations in the total weekly deposits and

withdrawals are common, a relatively accurate (as compared to typical retail businesses)

forecast can be projected, based on this data, over a modest planning horizon of, say, the

next 10 to 15 weeks. Furthermore, as we will show later in Section 3.5, even in the presence
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of a considerable amount of variation between the forecasted and realized values of weekly

deposits and withdrawals, the decisions based on forecasted data can be efficiently adapted

to obtain near-optimal real-time solutions.

For the basic model, the Timeline of the Activities conducted by the DI is as follows.

• At the end of Period t, the inventories of used cash and fit cash are counted by the DI

and decisions on (1) the quantity of used cash to be deposited to the Fed and (2) the

quantity of fit cash to be withdrawn from the Fed are taken.

• The 3PLP transports the cash between the DI and the Fed. By the beginning of the

Period t + 1, the DI receives the fit cash withdrawn (if any) from the Fed.

• During Period t + 1, the DI uses the fit cash inventory to satisfy demand (from cus-

tomers) and collects the used cash deposited (by customers).

Notation

We now introduce the notation used for defining and analyzing the DP.

Parameters:

T Number of periods in the planning horizon.
s Transportation ordering cost, which is a fixed fee charged by the 3PLP.
h Per bundle per period holding cost incurred by the DI.
e Per bundle cross-shipping cost charged by the Fed.
ρ The percentage of fit cash in the used cash. In our computations (Sections 3.4,

3.5, and 3.3.3), we set ρ = 0.75.
du

t The projected deposit of used cash (in bundles) by the DI’s customers during
Period t, t = 1, 2, . . . , T .

df
t The projected demand of fit cash (in bundles) for the DI’s customers during

Period t, t = 1, 2, . . . , T .
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Decision Variables:

xu
t The quantity of used cash (in bundles) deposited to the Fed at the end of Period t,

t = 0, 1, . . . , T .

xf
t The quantity of fit cash (in bundles) withdrawn from the Fed at the end of

Period t, t = 0, 1, . . . , T .

X the solution vector (xu
0 , x

f
0 , x

u
1 , x

f
1 , . . . , x

u
T , xf

T ) of BM, which includes all the deci-
sions made during the planning horizon.

Other Notation:

Iu
t The inventory of used cash (in bundles) at the end of Period t, t = 0, 1, . . . , T .

If
t The inventory of fit cash (in bundles) at the end of Period t, t = 0, 1, . . . , T .

vt (Iu
t , If

t , xu
t , x

f
t ), the vector that denotes the state of the system and the decisions

made at the end of Period t.

Gt(I
u
t , If

t ) The minimum cost incurred during periods 1 through t, given that, at the end
of Period t, the inventory of used cash is Iu

t and the inventory of fit cash is If
t .

Ht The holding cost incurred during Period t.
Ot The ordering cost charged by the 3PLP for the transportation of cash at the

end of Period t−1. Without loss of generality, this cost is charged to Period t.
Rt The cross-shipping cost (if any) incurred on the transaction of used- and fit-

cash between the DI and the Fed at the end of Period t − 1. Without loss of
generality, this cost is charged to Period t.

Ct The total cost incurred during Period t. Thus, Ct = Ht + Ot + Rt.
C(X) The total cost incurred during the entire T -period planning horizon for a so-

lution X of BM.

A Dynamic Programming Formulation

We now define a dynamic programming formulation for BM. We assume that the initial and

ending inventory for used cash and fit cash are both 0. Thus, we have the following boundary

conditions:

xu
0 = Iu

0 = If
0 = 0, xf

0 > 0; xu
T = Iu

T , xf
T = If

T = 0.

Note that in reality, the initial and ending cash positions of a DI are never zero. The Fed

requires DIs to hold a minimum of one day of average daily payments of fit cash in their
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vaults (Federal Reserve, 2006). Since this amount, which is essentially a safety stock, is

regulated by the Fed, it is not affected by the DIs’ decisions. Therefore, we only account for

fit cash kept over and above this amount.

Dynamic Program (DP):

Stage: Each period. There are T stages, t = 1, 2, . . . , T.

State: The inventories of used cash and fit cash at the end of period t, (Iu
t , If

t ).

Decision: The quantity of used cash deposited to the Fed and the quantity of fit cash

withdrawn from the Fed at the end of period t, (xu
t , x

f
t ).

Objective: min
Iu
T

GT (Iu
T , 0)

Cost Calculation:

Given vt−1 = (Iu
t−1, I

f
t−1, x

u
t−1, x

f
t−1) (i.e., the state of the system and the decisions made at

the end of Period t− 1), three types of costs are incurred in Period t:

1. Holding cost (Ht)

After the 3PLP transports the cash between the DI and the Fed, the inventory of used

cash (resp., fit cash) at the beginning of Period t is Iu
t−1 − xu

t−1 (resp., If
t−1 + xf

t−1). At

the end of period t, the inventory of used cash (resp., fit cash) is Iu
t = Iu

t−1− xu
t−1 + du

t

(resp., If
t = If

t−1 + xf
t−1 − df

t ). In our models, the duration of each period is one week;

the week-to-week demands and deposits are deterministic, but non-stationary. The

daily demand rate within each week is assumed to be constant. Thus, the holding cost

of used cash (resp., fit cash) for Period t is calculated as the product of the per-bundle



www.manaraa.com

60

per-period holding cost and the average of the inventories of used cash (resp., fit cash)

at the beginning and the end of Period t. Thus, the holding cost of the DI during

Period t is:

Ht(vt−1) = 0.5h[(Iu
t−1 − xu

t−1) + (Iu
t−1 − xu

t−1 + du
t ) + (If

t−1 + xf
t−1) + (If

t−1 + xf
t−1 − df

t )].

2. Ordering cost (Ot)

If, at the end of period t − 1, the DI either deposits used cash or withdraws fit cash,

the 3PLP charges a fixed cost s during Period t.

Ot(vt−1) =





0, if xu
t−1 = xf

t−1 = 0

s, otherwise.

3. Cross-shipping cost (Rt)

If, at the end of Period t− 1, the DI both deposits used cash and withdraws fit cash,

the Fed charges a cross-shipping fee during Period t. Recall from Section 3.1 that the

per-bundle cross-shipping fee of e is charged on the minimum of the fit-cash withdrawn

and the fit cash in the used-cash deposited. Since ρ is the percentage of fit cash in the

used cash, we have

Rt(vt−1) = e min{ρxu
t−1, x

f
t−1}.

Thus, the total cost incurred during Period t is:

Ct(vt−1) = Ht(vt−1) + Ot(vt−1) + Rt(vt−1).

Note that given a solution X = (xu
0 , x

f
0 , x

u
1 , x

f
1 , . . . , x

u
T , xf

T ) of BM, the value of vt−1 is deter-

mined. To simplify our exposition in the proofs of Theorems 3.2.1 and 3.2.3, given a solution
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X of BM, we simply use Ot(X) (resp., Rt(X), Ht(X), and Ct(X)) to represent Ot(vt−1)

(resp., Rt(vt−1), Ht(vt−1), and Ct(vt−1)).

It is easy to see that both the state space and the number of possible decision vectors of the

DP defined above are exponential in the input size of an instance of BM. We now derive two

important structural results for BM that can help us significantly reduce the state space of

the DP, and consequently obtain a polynomial-time algorithm for BM.

3.2.2 Two Structural Results for BM

Theorem 3.2.1 identifies a characteristic of an optimal solution regarding the withdrawals

of fit-cash: there exists an optimal solution in which fit cash is withdrawn only when the

fit-cash inventory becomes zero. Theorem 3.2.3 establishes a property of used-cash deposits:

there exists an optimal solution in which a DI will always deposit either none or all of its

used-cash inventory.

Before we introduce our results, it is instructive to compare and contrast the management

of inventory in our model with that in single-product lot-sizing problems and in joint-

replenishment problems (e.g., Wagner and Whitin, 1958; Joneja, 1990). Used cash and

fit cash of the same denomination can be considered as two classes of the same product,

with one partially convertible (i.e., 75% convertible) into the other via fit-sorting. The costs

of managing the inventories for these two classes are inter-dependent in a somewhat compli-

cated manner. On the one hand, if used-cash is deposited and fit-cash is ordered together

in the same period, then one realizes savings as there is only one transportation order as
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opposed to two if these two actions occur in two different periods. However, an additional

cross-shipping penalty is incurred if both these actions occur together in the same period.

Furthermore, the cross-shipping cost is proportional to the minimum of the volumes of the

used-cash deposited and the fit-cash withdrawn. Clearly, there is a need to jointly manage

the inventories of the two classes in BM. To further highlight our unique setting in the joint

replenishment realm, note that the DI’s transactions (of used- and fit-cash) with the Fed

at the end of a period impact the inventories of the two classes in two opposite ways: the

inventory of fit-cash increases and that of used-cash decreases after the transaction.

Theorem 3.2.1 There exists an optimal solution, say X, of BM such that either xf
t = 0 or

If
t = 0 for t = 1, 2, . . . , T .

Proof: Consider an arbitrary solution X of BM and let t be the earliest period such that

both xf
t > 0 and If

t > 0. Next, let t− k be the latest period before t such that xf
t−k > 0 and

If
t−k = 0, 1 ≤ k ≤ t. The existence of such a period is guaranteed since we have xf

0 > 0 and

If
0 = 0. Thus, t − k has at least one possible value, namely 0. It follows immediately from

the definitions of t− k and t that there is no withdrawal of fit cash by the DI (from the Fed)

between these two periods. Thus, we have xf
t−k > If

t .

Let δ = If
t . We now define another solution X̄ of BM as follows. Let x̄u

i = xu
i , i = 1, 2, . . . , T ;

x̄f
t−k = xf

t−k − δ; x̄f
t = xf

t + δ; x̄f
i = xf

i , i ∈ {0, 1, . . . , T}\{t − k, t}. The only differences

between X̄ and X are the volumes of fit-cash withdrawals at the end of Periods t − k and

t. Thus, the difference between the total ordering costs (resp., cross-shipping costs) of these

two solutions includes only the differences of the ordering costs (resp., cross-shipping costs)
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during Period t− k + 1 and Period t + 1. Hence,

O(X̄)−O(X) = Ot−k+1(X̄)−Ot−k+1(X) + Ot+1(X̄)−Ot+1(X),

R(X̄)−R(X) = Rt−k+1(X̄)−Rt−k+1(X) + Rt+1(X̄)−Rt+1(X).

Since xf
t−k > 0, x̄f

t−k > 0, we have Ot−k+1(X̄)−Ot−k+1(X) = s− s = 0. Since xf
t > 0, x̄f

t > 0,

we have Ot+1(X̄) − Ot+1(X) = s − s = 0. Thus, O(X̄) − O(X) = 0. As compared to

solution X, the total inventory of fit cash held by solution X̄ between the end of Period t−k

and the end of Period t is less by an amount δ > 0. Thus, H(X̄) − H(X) = −δhk and

Īf
t = If

t − δ = 0. Hence, we have C(X̄)−C(X) = H(X̄)−H(X) + O(X̄)−O(X) + R(X̄)−

R(X) = −δhk + 0 + Rt−k+1(X̄)− Rt−k+1(X) + Rt+1(X̄)− Rt+1(X). The possible values of

Rt−k+1(X̄)−Rt−k+1(X) = e(min{ρxu
t−k, x̄

f
t−k} −min{ρxu

t−k, x
f
t−k}) are as follows:

(A1) If ρxu
t−k ≤ x̄f

t−k, we have Rt−k+1(X̄)−Rt−k+1(X) = 0.

(A2) If x̄f
t−k < ρxu

t−k < xf
t−k, we have Rt−k+1(X̄)−Rt−k+1(X) = e(x̄f

t−k − ρxu
t−k) > −eδ.

(A3) If ρxu
t−k ≥ xf

t−k, we have Rt−k+1(X̄)−Rt−k+1(X) = −eδ.

Next, we consider the possible values of Rt+1(X̄)−Rt+1(X) = e(min{ρxu
t , x̄

f
t }−min{ρxu

t , x
f
t }):

(B1) If ρxu
t ≤ xf

t , we have Rt+1(X̄)−Rt+1(X) = 0.

(B2) If xf
t < ρxu

t < x̄f
t , we have Rt+1(X̄)−Rt+1(X) = e(ρxu

t − xf
t ) < eδ.

(B3) If ρxu
t ≥ x̄f

t , we have Rt+1(X̄)−Rt+1(X) = eδ.

Thus, we have nine possible combinations (Ai, Bj), i = 1, 2, 3; j = 1, 2, 3. For each of the

five combinations (A1, B1), (A2, B1), (A3, B1), (A3, B2), and (A3, B3), we have Rt−k+1(X̄) −



www.manaraa.com

64

Rt−k+1(X) + Rt+1(X̄) − Rt+1(X) ≤ 0. Since −δhk < 0, we have C(X̄) − C(X) < 0. Thus,

X̄ is a better solution than X.

Let γ = xf
t . We define another solution X̂ of BM as follows: x̂u

i = xu
i , i = 1, 2, . . . , T ;

x̂f
t−k = xf

t−k + γ; x̂f
t = 0; x̂f

i = xf
i , i ∈ {0, 1, . . . , T}\{t − k, t}. Thus, H(X̂) −H(X) = γhk.

Since xf
t−k > 0, x̂f

t−k > 0, we have Ot−k+1(X̂)−Ot−k+1(X) = s− s = 0. Since xf
t > 0, x̂f

t = 0,

we have Ot+1(X̂)−Ot+1(X) ≤ s− s = 0. Thus, we have C(X̂)− C(X) = H(X̂)−H(X) +

O(X̂)−O(X)+R(X̂)−R(X) ≤ γhk+0+Rt−k+1(X̂)−Rt−k+1(X)+Rt+1(X̂)−Rt+1(X). Under

each of the four combinations (A1, B2), (A1, B3), (A2, B2), and (A2, B3), we have Rt−k+1(X̂)−

Rt−k+1(X) = 0, Rt+1(X̂) − Rt+1(X) = −eγ. Thus, C(X̂) − C(X) ≤ γhk − eγ. We now

investigate these 4 combinations individually.

(i) (A1, B2): When ρxu
t−k ≤ x̄f

t−k and xf
t < ρxu

t < x̄f
t , we have C(X̄) − C(X) = −δhk +

e(ρxu
t−xf

t ). If C(X̄)−C(X) < 0, then X̄ is a better solution than X. If C(X̄)−C(X) ≥

0, then we have −δhk + e(ρxu
t − xf

t ) ≥ 0. Since 0 < ρxu
t − xf

t < δ, we have e > hk.

Then, C(X̂) − C(X) ≤ γhk − eγ = γ(hk − e) < 0. Therefore, X̂ is a better solution

than X.

(ii) (A1, B3): When ρxu
t−k ≤ x̄f

t−k and ρxu
t ≥ x̄f

t , we have C(X̄) − C(X) = −δhk + eδ. If

C(X̄) − C(X) < 0, then X̄ is a better solution than X. If C(X̄) − C(X) ≥ 0, then

we have −δhk + eδ ≥ 0. Thus, e ≥ hk and, therefore, C(X̂) − C(X) ≤ γhk − eγ =

γ(hk − e) ≤ 0. Consequently, X̂ is at least as good as X.

(iii) (A2, B2): When x̄f
t−k < ρxu

t−k < xf
t−k and xf

t < ρxu
t < x̄f

t , we have C(X̄) − C(X) =

−δhk + e(x̄f
t−k−ρxu

t−k)+ e(ρxu
t −xf

t ). If C(X̄)−C(X) < 0, then X̄ is a better solution
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than X. If C(X̄)−C(X) ≥ 0, then we have −δhk + e(x̄f
t−k−ρxu

t−k)+ e(ρxu
t −xf

t ) ≥ 0.

Since 0 < (x̄f
t−k−ρxu

t−k)+(ρxu
t −xf

t ) < δ, we have e > hk. Therefore, C(X̂)−C(X) ≤

γhk − eγ = γ(hk − e) < 0. Again, X̂ is a better solution than X.

(iv) (A2, B3): When x̄f
t−k < ρxu

t−k < xf
t−k and ρxu

t ≥ x̄f
t , we have C(X̄)− C(X) = −δhk +

e(x̄f
t−k − ρxu

t−k) + eδ. If C(X̄)− C(X) < 0, X̄ is a better solution than X. Otherwise,

if C(X̄)−C(X) ≥ 0, then we have −δhk + e(x̄f
t−k − ρxu

t−k) + eδ ≥ 0. Since 0 < x̄f
t−k −

ρxu
t−k + δ < δ, we have e > hk. Therefore, C(X̂)−C(X) ≤ γhk − eγ = γ(hk − e) < 0

and, hence, X̂ is a better solution than X.

Thus, if in a solution X of BM, there exists some t such that xf
t > 0 and If

t > 0, we can

obtain another solution (either X̄ of X̂) which satisfies either xf
t = 0 or If

t = 0, without

increasing the total cost. Finally, if there exist multiple periods that satisfy xf
t > 0 and

If
t > 0, the argument above can be repeated – starting from the earliest such period – for

each of these periods, to obtain an optimal solution which satisfies either xf
t = 0 or If

t = 0

for t = 1, 2, . . . T . The result follows.

Theorem 3.2.1 immediately implies the following result.

Corollary 3.2.2 There exists an optimal solution X of BM such that when xf
t > 0, we

have xf
t =

∑k
j=1 df

t+j, for some k ∈ {1, 2, . . . , T − t}. Also, If
t = −df

t +
∑k

j=0 df
t+j for some

k ∈ {0, 1, . . . , T − t}. Thus, If
t has (T − t + 1) possible values.

While Theorem 3.2.1 examined the decisions on the withdrawal of fit cash from the Fed, the

following result analyzes the decisions on the deposits of used cash to the Fed.
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Theorem 3.2.3 There exists an optimal solution, say X, of BM such that either xu
t = 0 or

xu
t = Iu

t for every t = 1, 2, . . . , T .

Proof: Let X be an arbitrary solution of BM and t be the latest period with 0 < xu
t < Iu

t .

Then, let t + k be the first period after t such that xu
t+k = Iu

t+k, 1 ≤ k ≤ T − t. Since

xu
T = Iu

T > 0, note that t + k has at least one possible value, namely T . Also, we have

xu
t+k > Iu

t − xu
t since the definitions of t and t + k imply that no used-cash deposit occurs

between these two periods.

Let δ = Iu
t −xu

t > 0. We now define another solution of BM, X̄. This solution is the same as

X, except for the values of the deposits of used cash at the end of Period t and Period t+ k.

Let x̄u
t = Iu

t = xu
t + δ, x̄u

t+k = xu
t+k − δ. Since xu

t > 0, x̄u
t > 0, and xu

t+k > 0, x̄u
t+k > 0, we

have Ot+1(X̄) − Ot+1(X) = s − s = 0 and Ot+k+1(X̄) − Ot+k+1(X) = s − s = 0. Thus,

C(X̄) − C(X) = −δhk + Rt+1(X̄) − Rt+1(X) + Rt+k+1(X̄) − Rt+k+1(X). Also, Rt+1(X̄) −

Rt+1(X) = e(min{ρxu
t + ρδ, xf

t } − min{ρxu
t , x

f
t }) ≤ eρδ, and Rt+k+1(X̄) − Rt+k+1(X) =

e(min{ρxu
t+k−ρδ, xf

t+k}−min{ρxu
t+k, x

f
t+k}) ≤ 0. It follows that C(X̄)−C(X) ≤ −δhk+eρδ =

(−hk + eρ)δ.

If hk > eρ, we have C(X̄) < C(X). Thus, X̄ is a better solution than X.

Otherwise, if hk ≤ eρ, then there are three possibilities:

1. If ρxu
t ≥ xf

t , then, Rt+1(X̄) − Rt+1(X) = 0. Since Rt+k+1(X̄) − Rt+k+1(X) ≤ 0, we

have C(X̄)− C(X) ≤ 0− δhk < 0, which implies X̄ is a better solution than X.

2. If ρxu
t+k ≤ xf

t+k, then Rt+k+1(X̄)−Rt+k+1(X) = −eρδ. Since Rt+1(X̄)−Rt+1(X) ≤ eρδ,
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we have C(X̄) − C(X) ≤ eρδ − eρδ − δhk < 0, which implies X̄ is a better solution

than X.

3. If ρxu
t < xf

t and ρxu
t+k > xf

t+k, we let γ = xu
t , and consider another solution X̂ of

BM, defined as follows: x̂f
i = xf

i , i = 1, 2, . . . , T ; x̂u
t = 0; x̂u

t+k = xu
t+k + γ; x̂u

i = xu
i , i ∈

{1, 2, . . . , T}\{t, t+k}. Since xu
t > 0, x̂u

t = 0, we have Ot+1(X̂)−Ot+1(X) ≤ s− s = 0.

Since xu
t+k > 0, x̂u

t+k > 0, we have Ot+k+1(X̂) − Ot+k+1(X) = s − s = 0. Thus, we

have C(X̂)− C(X) ≤ γhk + Rt+1(X̂)−Rt+1(X) + Rt+k+1(X̂)−Rt+k+1(X). We have

Rt+1(X̂)−Rt+1(X) = −eργ, Rt+k+1(X̂)−Rt+k+1(X) = 0. Therefore, C(X̂)−C(X) ≤

γhk − eργ = (hk − eρ)γ. Since hk ≤ eρ, we have C(X̂)−C(X) ≤ 0, which implies X̂

is at least as good as X.

To summarize, if in a solution X of BM, there exists some t such that 0 < xu
t < Iu

t , we can

always find another solution which satisfies either xu
t = 0 or xu

t = Iu
t , without increasing the

total cost. If there exist multiple periods with 0 < xu
t < Iu

t , then the argument above can

be repeated for each such period, starting from the latest of these periods. This concludes

the proof.

The following result follows immediately from Theorem 3.2.3.

Corollary 3.2.4 There exists an optimal solution of BM for which Iu
t =

∑k
j=1 du

t+1−j for

some k ∈ {1, 2, . . . , t}. Thus, Iu
t has t possible values.

Together, Theorems 3.2.1 and 3.2.3 allow us to significantly reduce the enumeration of the

states when searching for an optimal solution of BM. We now introduce the forward recursion

function of DP.
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3.2.3 Forward Recursion Function of DP and its Computational Complexity

Recall from Section 3.2.1 that (i) Gt(I
u
t , If

t ) is the minimum cost incurred during periods

1 through t, given that, at the end of Period t, the inventory of used cash is Iu
t and the

inventory of fit cash is If
t and (ii) Ct(I

u
t−1, I

f
t−1, x

u
t−1, x

f
t−1) is the total cost incurred during

Period t.

From Theorem 3.2.1 and the relationship If
t = If

t−1 + xf
t−1 − df

t , to have a fit-cash inventory

of If
t at the end of Period t, one of the following must hold at the end of Period t − 1: (i)

We have fit-cash inventory of 0 and order If
t + df

t fit-cash from the Fed; i.e., If
t−1 = 0 and

xf
t−1 = If

t + df
t or (ii) We have fit-cash inventory of If

t + df
t and do not place an order for

fit-cash from the Fed; i.e., If
t−1 = If

t + df
t , x

f
t−1 = 0. Since Iu

0 = If
0 = xu

0 = 0, xf
0 > 0, we have

Iu
1 = du

1 . Thus, for t = 1, the forward recursion function is:

G1(d
u
1 , I

f
1 ) = C1(0, 0, 0, I

f
1 + df

1) (3.1)

For 2 ≤ t ≤ T , the forward recursions have the following forms, depending on the value of

Iu
t :

1. If Iu
t = du

t , then the used-cash inventory is 0 at the beginning of Period t, which in

turn implies that, at the end of Period t− 1, we deposit all the used-cash inventory to

the Fed (i.e., xu
t−1 = Iu

t−1). Thus, in this case, the forward recursion function is:

Gt(d
u
t , I

f
t ) = min

Iu
t−1





Gt−1(I
u
t−1, I

f
t + df

t ) + Ct(I
u
t−1, I

f
t + df

t , I
u
t−1, 0),

Gt−1(I
u
t−1, 0) + Ct(I

u
t−1, 0, I

u
t−1, I

f
t + df

t )

(3.2)

2. If Iu
t > du

t , then the used-cash inventory is positive at the beginning of Period t. From

Theorem 3.2.3, we have xu
t−1 = 0. Consequently, we have Iu

t−1 = Iu
t − du

t and the
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forward recursion function is:

Gt(I
u
t , If

t ) = min





Gt−1(I
u
t − du

t , I
f
t + df

t ) + Ct(I
u
t − du

t , I
f
t + df

t , 0, 0),

Gt−1(I
u
t − du

t , 0) + Ct(I
u
t − du

t , 0, 0, I
f
t + df

t )

(3.3)

Theorem 3.2.5 The computational complexity of DP is O(T 3).

Proof: (i) For t = 1, the forward recursion function is Equation 3.1. From Corollary 3.2.2,

If
1 has T possible values. Thus, there are T possible values of C1(0, 0, 0, I

f
1 + df

1).

(ii) When 2 ≤ t ≤ T , from Corollary 3.2.2, If
t has (T − t + 1) possible values. Also, the

values of If
t and Iu

t are independent of each other. We have two possibilities:

(1) The forward recursion function is Equation 3.2. Then, from Corollary 3.2.4, Iu
t−1 has

t− 1 possible values. Thus, for each state defined by Equation 3.2, there are 2(t− 1)

possible combinations of Gt−1(I
u
t−1, I

f
t−1) + Ct(I

u
t−1, I

f
t−1, x

u
t−1, x

f
t−1). Since there are

(T − t + 1) states defined by Equation 3.2, the total number of possible combinations

of Gt−1(I
u
t−1, I

f
t−1)+Ct(I

u
t−1, I

f
t−1, x

u
t−1, x

f
t−1) for over all these states is 2(t−1)(T +1−t).

(2) The forward recursion function is Equation 3.3. For each state defined by Equation 3.3,

there are 2 possible combinations of Gt−1(I
u
t−1, I

f
t−1) + Ct(I

u
t−1, I

f
t−1, x

u
t−1, x

f
t−1). From

Corollary 3.2.4, there are t possible values of Iu
t . Among them, (t − 1) values satisfy

Iu
t > du

t . Thus, the number of states defined by Equation 3.3 is (t − 1)(T + 1 −

t). Consequently, there are a total of 2(t − 1)(T + 1 − t) possible combinations of

Gt−1(I
u
t−1, I

f
t−1) + Ct(I

u
t−1, I

f
t−1, x

u
t−1, x

f
t−1) over all the states defined by Equation 3.3.

Over all values of t (i.e., t = 1, 2, . . . , T ), the total number, ξ(T ), of possible combinations of

Gt−1(I
u
t−1, If

t−1) + Ct(I
u
t−1, I

f
t−1, x

u
t−1, x

f
t−1) that the DP evaluates for a T -period instance of
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BM is, T +
∑T

t=2[2(t−1)(T +1− t)+2(t−1)(T +1− t)] = 2
3
T 3 + 1

3
T. Since each combination

can be evaluated in time O(1), the computational complexity of DP is O(T 3).

The primary implication of Theorem 3.2.5 is that if a DI decides not to implement fit-

sorting (and, therefore, also cannot exploit the custodial inventory option), then its optimal

inventory decisions can be obtained efficiently.

3.2.4 A Generalized BM (BMg)

The original BM (referred to here as BMo, to avoid confusion) has the following assumptions:

If
0 = 0, Iu

0 = 0, If
T = 0, xu

T = Iu
T , df

t > 0, du
t > 0, t = 1, 2, . . . , T . However, in practice,

the DI may want to have some extra fit-cash inventory above the minimum amount required

by the Fed (see Section 3.2.1) at the end of a planning horizon, i.e., If
T > 0. Consequently,

fit-cash inventory can be positive at the beginning of the next planning horizon, i.e., If
0 > 0.

For practical reasons, we assume a DI’s purpose of carrying fit-cash inventory over planning

horizons is to satisfy customers’ demand. Thus, we assume that the DI will not deposit

its initial inventory of fit-cash back to the Fed. Similarly, we only consider the non-trivial

case in which the DI needs to withdraw a positive amount of fit-cash during the planning

horizon, i.e., If
0 <

∑T
t=1 df

t +If
T . In this section, we study a generalized version of BM (BMg)

in which the initial and ending inventories of both fit cash and used cash are non-negative,

i.e., If
0 ≥ 0, Iu

0 ≥ 0, If
T ≥ 0, and Iu

T ≥ 0. We first describe an intermediate problem (referred

to as BMc) which is derived from BMg, and shares some structural similarities with BMo.

Next, we prove that BMg and BMc share the same optimal solution. Finally, we show that

BMc can be solved in polynomial time.
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Given an instance of BMg with d̂f
t > 0, d̂u

t > 0, t = 1, 2, . . . , T , Îf
0 ≥ 0, Îu

0 ≥ 0, Îf
T ≥ 0, we

now describe the procedure to convert it to an instance of BMc: First, we copy the fit-cash

demand of the first T − 1 periods from BMg to BMc, and set the fit-cash demand of the last

period in BMc as the sum of the fit-cash demand of the last period in BMg and the ending

inventory of fit-cash, i.e., df
T = d̂f

T + Îf
T . Second, we determine the value of t1, the latest

period until which the DI does not have to withdraw fit-cash from the Fed and, instead, use

initial inventory to satisfy customers’ demand. The value of t1 is determined as follows: if

Îf
0 < df

1 , then t1 = 0; otherwise, t1 is defined by
∑t1

t=1 df
t ≤ Îf

0 <
∑t1+1

t=1 df
t . Finally, we

make the following updates: If
0 = 0, If

T = 0; df
t = 0, t = 1, 2, . . . , t1; df

t1+1 =
∑t1+1

t=1 d̂f
t − Îf

0 ;

df
t = d̂f

t , t1 + 2 ≤ t ≤ T − 1; df
T = d̂f

T + Îf
T . Note that during the transformation, we only

alter the demands of fit-cash and the initial and ending inventories of fit-cash. The used-cash

deposits in BMc are the same as in BMg.

The following two claims characterize the relationship between the solutions of BMg and

BMc from two aspects: feasibility and optimality.

Claim 3.2.1 Each feasible solution to an instance of BMg is a feasible solution to the cor-

responding instance of BMc, and vice-versa.

Proof: A feasible solution to an instance of BMg, X, satisfies the following conditions:

Îf
t = Îf

0 +
t−1∑
i=0

xf
i −

t∑
i=1

d̂f
i ≥ 0, 1 ≤ t ≤ T − 1, (3.4)

Îf
0 +

T−1∑
i=0

xf
i −

T∑
i=1

d̂f
i − Îf

T = 0, (3.5)

xu
t ≤ Îu

t =
t∑

i=1

d̂u
i −

t−1∑
i=0

xu
i , 1 ≤ t ≤ T, (3.6)
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xf
i ≥ 0, xu

i ≥ 0, i = 0, 1, . . . , T. (3.7)

Similarly, the feasibility conditions to an instance of the corresponding BMc are:

If
t =

t−1∑
i=0

xf
i −

t∑
i=1

df
i ≥ 0, 1 ≤ t ≤ T − 1, (3.8)

T−1∑
i=0

xf
i −

T∑
i=1

df
i = 0, (3.9)

xu
t ≤ Iu

t =
t∑

i=1

du
i −

t−1∑
i=0

xu
i , 1 ≤ t ≤ T, (3.10)

xf
i ≥ 0, xu

i ≥ 0, i = 0, 1, . . . , T. (3.11)

=⇒ Assume X̂ is a feasible solution to an instance of BMg. Then X̂ satisfies Constraints 3.4

- 3.7. Since du
i = d̂u

i , i = 1, 2, . . . , T , it is clear that X̂ satisfies Constraints 3.10 and 3.11.

For 1 ≤ t ≤ t1, from the definition of t1, we have
∑t

i=1 df
i = 0. From Constraint 3.7, we have

x̂f
i ≥ 0, i = 0, 1, . . . , T . Thus, Constraint 3.8 holds for 1 ≤ t ≤ t1. When t = t1 + 1, we have

−∑t1+1
i=1 df

i = 0 − df
t1+1 = Îf

0 −
∑t1+1

i=1 d̂f
i . For t1 + 2 ≤ t ≤ T − 1, since d̂f

t = df
t , we have

−∑t
i=1 df

i = Îf
0 −

∑t
i=1 d̂f

i . Since X̂ satisfies Constraint 3.4, it also satisfies Constraint 3.8

for t1 + 1 ≤ t ≤ T − 1. Finally, for t = T , we have −∑T
i=1 df

i = −∑T−1
i=1 df

i − df
T =

(Îf
0 −

∑T−1
i=1 d̂f

i ) − (d̂f
T + Îf

T ) = Îf
0 −

∑T
i=1 d̂f

i − Îf
T . Since Constraint 3.5 holds, X̂ satisfies

Constraint 3.9. Therefore, X̂ satisfies Constraints 3.8-3.11.

⇐= Assume X̄ is a feasible solution to an instance of BMc. Then X̄ satisfies Constraints 3.8-

3.11. Since du
i = d̂u

i , i = 1, 2, . . . , T , Constraints 3.6 and 3.7 are satisfied by X̄. For 1 ≤ t ≤ t1,

from the definition of t1, we have Îf
0 −

∑t
i=1 d̂f

i ≥ 0 and
∑t

i=1 df
i = 0. Therefore, since X̄

satisfies Constraint 3.8, it satisfies Constraint 3.4 for 1 ≤ t ≤ t1. For t1 + 1 ≤ t ≤ T , the

argument is similar to that in the first part of the proof; we avoid repeating it for brevity.
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Therefore, X̄ is also a feasible solution to the corresponding instance of BMg. The result

follows.

While Claim 3.2.1 shows that BMg and BMc share the same feasible set, the claim below

analyzes the difference between the total costs incurred in these two instances for the same

feasible solution.

Claim 3.2.2 Assume X is a feasible solution to an instance of BMg. Let Cg(X) (resp.,

Cc(X)) represent the total cost corresponding to X in BMg (resp., the corresponding instance

of BMc). Then, we have Cg(X)−Cc(X) = 1
2
h[(2t1 +1)Îf

0 + Îf
T −2

∑t1
t=1

∑t
i=1 d̂f

i ], a quantity

that is independent of X.

Proof: For X, the ordering cost (resp., cross-shipping cost) incurred in BMg and the corre-

sponding instance of BMc is the same. Thus, the only difference between Cg(X) and Cc(X)

is the holding cost for fit cash. Recall from Section 3.2.1 that the holding cost for fit-cash

during Period t is 1
2
h(If

t−1 + xf
t−1 + If

t ). Thus, we have

Cg(X)− Cc(X) =
1

2
h

T∑
t=1

[(Îf
t−1 + xf

t−1 + Îf
t )− (If

t−1 + xf
t−1 + If

t )]

=
1

2
h

T∑
t=1

(Îf
t−1 − If

t−1) +
1

2
h

T∑
t=1

(Îf
t − If

t )

=
1

2
h(Îf

0 + Îf
T ) + h

T−1∑
t=1

(Îf
t − If

t ).

Since Îf
t = Îf

0 +
∑t−1

i=0 xf
i −

∑t
i=1 d̂f

i , If
t = If

0 +
∑t−1

i=0 xf
i −

∑t
i=1 df

i , t = 1, 2, . . . , T −1, we have

Îf
t − If

t = Îf
0 +

∑t−1
i=0 xf

i −
∑t

i=1 d̂f
i − (If

0 +
∑t−1

i=0 xf
i −

∑t
i=1 df

i ) = Îf
0 −

∑t
i=1 d̂f

i +
∑t

i=1 df
i , t =

1, 2, . . . , T − 1.
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For 1 ≤ t ≤ t1, we have Îf
t − If

t = Îf
0 −

∑t
i=1 d̂f

i . For t = t1 + 1, we have

Îf
t1+1 − If

t1+1 = Îf
0 −

t1+1∑
i=1

d̂f
i +

t1+1∑
i=1

df
i

= Îf
0 −

t1+1∑
i=1

d̂f
i +

t1∑
i=1

df
i + df

t1+1

= Îf
0 −

t1+1∑
i=1

d̂f
i + 0 + (

t1+1∑
i=1

d̂f
i − Îf

0 ) = 0.

For t1 + 2 ≤ t ≤ T − 1, since d̂f
t = df

t and Îf
t1+1 = If

t1+1, we have Îf
t − If

t = 0.

Combining the above three results, we have

Cg(X)− Cc(X) =
1

2
h(Îf

0 + Îf
T ) + h

t1∑
t=1

(Îf
0 −

t∑
i=1

d̂f
i ) =

1

2
h[(2t1 + 1)Îf

0 + Îf
T − 2

t1∑
t=1

t∑
i=1

d̂f
i ],

a quantity that is independent of X.

The following theorem follows immediately from the above two claims.

Theorem 3.2.6 Every optimal solution to an instance of BMg is an optimal solution to the

corresponding instance of BMc, and vice-versa.

Thus, to solve an instance of BMg, we can solve the corresponding instance of BMc. Next,

we compare BMc with BMo and derive some structural properties of BMc. In both BMc and

BMo, we have If
0 = 0, If

T = 0. However, in BMc, the fit-cash demands of the first t1 periods

are all zero. This violates the assumption of df
t > 0, t = 1, 2, . . . , T , which is required for

BMo. However, the following result shows that the property described in Theorem 3.2.1

(Section 3.2.2) continues to hold for BMc.

Theorem 3.2.7 There exists an optimal solution, say X, of BMc such that either xf
i = 0

or If
i = 0 for i = 0, 1, . . . , T .
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Proof: Consider an arbitrary solution X of BMc and let t0 be the first period the DI

withdraws fit-cash from the Fed. We first observe that 0 ≤ t0 ≤ t1. Suppose t0 ≥ t1 + 1,

then we have xf
i = 0 for 0 ≤ i ≤ t1, and If

t1+1 = If
0 +

∑t1
i=0 xf

i −
∑t1+1

i=1 df
i = −df

1 < 0, which

contradicts the assumption that X is an optimal solution of BMc. Hence, 0 ≤ t0 ≤ t1. It is

easy to see that either xf
i = 0 or If

i = 0 for i = 0, 1, . . . , t0.

Next we show that either xf
i = 0 or If

i = 0 for i = t0 + 1, t0 + 2, . . . , T . Let t be the earliest

period such that both xf
t > 0 and If

t > 0. Obviously, t ≥ t0 + 1. Let t − k be the latest

period before t such that xf
t−k > 0 and If

t−k = 0, 1 ≤ k ≤ t. The existence of such a period

is guaranteed since we have xf
t0 > 0 and If

t0 = 0. Thus, t − k has at least one possible

value, namely t0. It follows immediately from the definitions of t− k and t that there is no

withdrawal of fit cash by the DI (from the Fed) between these two periods. Thus, we have

xf
t−k > If

t . The remaining part of the proof is similar to that in the proof of Theorem 3.2.1.

We, therefore, avoid repeating it for brevity.

Theorem 3.2.7 immediately implies the following result.

Corollary 3.2.8 There exists an optimal solution X of BMc such that

(i) We have xf
t0 > 0 for some t0 ∈ {0, 1, . . . , t1} and xf

t = 0 ∀t ∈ {0, 1, . . . , t1}\{t0}. Also,

xf
t0 =

∑k
j=1 df

t1+j for some k ∈ {1, 2, . . . , T − t1}. For 0 ≤ t ≤ t1, we have If
t = 0 or

If
t =

∑k
j=1 df

t1+j for some k ∈ {1, 2, . . . , T − t1}. If
t has (T − t1 + 1) possible values.

(ii) For t1 + 1 ≤ t ≤ T , if xf
t > 0, we have xf

t =
∑k

j=1 df
t+j for some k ∈ {1, 2, . . . , T − t}.

Also, If
t = −df

t +
∑k

j=0 df
t+j for some k ∈ {0, 1, . . . , T − t}. Thus, If

t has (T − t + 1)

possible values.
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In the original BM (BMo), we require DI to deposit all the used-cash inventory at the end

of planning horizon, i.e., xu
T = Iu

T . However, in BMc, xu
T−1 is last decision made by DI for

used-cash deposit. Next through three claims, we show in Theorem 3.2.9 that the property

shown in Theorem 3.2.3 still holds for BMc.

Claim 3.2.3 There exists an optimal solution, say X, of BMc such that either xu
T−1 = 0 or

xu
T−1 = Iu

T−1.

Proof: Let X be an solution which satisfies 0 < xu
T−1 < Iu

T−1. Let δ = Iu
T−1 − xu

T−1. We

define another solution of BMc, X̄. Except for x̄u
T−1 = xu

T−1 + δ, all the other decisions of X̄

share the same value as in X. Thus, OT (X̄)−OT (X) = 0, RT (X̄)−RT (X) = e(min{ρxu
T−1+

ρδ, xf
T−1} −min{ρxu

T−1, x
f
T−1}) ≤ eρδ. It follows that C(X̄)− C(X) ≤ −δh + eρδ.

If h > eρ, then C(X̄) − C(X) < 0. Otherwise, we have h ≤ eρ. If ρxu
T−1 ≥ xf

T−1,

then RT (X̄) − RT (X) = 0, C(X̄) − C(X) < 0. If ρxu
T−1 < xf

T−1, we consider another

solution X̂, which is the same as X, except for x̂u
T−1 = 0. Thus, OT (X̂) − OT (X) ≤ 0,

RT (X̂) − RT (X) = 0 − eρxu
T−1. It follows that C(X̄) − C(X) ≤ xu

T−1(h − eρ) ≤ 0. The

results follow.

Using the similar method, we can prove the following claim.

Claim 3.2.4 There exists an optimal solution, say X, of BMc such that if xu
T−1 = 0, then

either xu
t = 0 or xu

t = Iu
t for every t = 1, 2, . . . , T .

Proof: Let X be an solution which satisfies xu
T−1 = 0 and 0 < xu

t < Iu
t , 0 ≤ t < T − 1.

By using a similar method as in the proof of Claim 3.2.3, we can obtain a solution no worse

than X by only changing xu
t to either 0 or Iu

t . We omit the details here for brevity.
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The proof of following claim is similar to that of Theorem 3.2.3.

Claim 3.2.5 There exists an optimal solution, say X, of BMc such that if xu
T−1 = Iu

T−1,

then either xu
t = 0 or xu

t = Iu
t for every t = 1, 2, . . . , T .

Combining Claims 3.2.3, 3.2.4, 3.2.5, we have the following theorem.

Theorem 3.2.9 There exists an optimal solution, say X, of BMc such that either xu
i = 0

or xu
i = Iu

i for i = 0, 1, . . . , T − 1.

We can now use a forward recursion similar to that described in Section 3.2.3 to optimize

BMc. The computational complexity of the corresponding DP for BMc remains O(T 3). Our

next task is to discuss the scenario when the DI implements the Fed’s policy.

3.3 The Reuse Model (RM): Inventory Decisions under the Fed’s Recirculation

Policy

Under the (local) Reuse Model (RM), a DI can recirculate cash by using the fit-sorting

and custodial inventory options. We first describe the model in Section 3.3.1. Then, in

Section 3.3.2, we show that the decision problem corresponding to RM is NP-complete and

establish a structural property for RM. Finally, in Section 3.3.3, we provide a mixed-integer

programming formulation of RM that is used in Section 3.4.

3.3.1 Problem Description

Structurally, RM is a much more complicated model than BM. There are four additional pa-

rameters (defined below) in RM. Moreover, for each period, RM has four additional decision
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variables and two more types of inventories. Under RM, the Timeline of the Activities

conducted by the DI and the 3PLP is significantly different than that in BM and is described

below.

• At the end of Period t, the DI takes the following actions (in the given order) (i)

counts the inventories of used cash, unfit cash, fit cash, and custodial inventory, (ii)

decides the quantity of used cash to fit-sort. As mentioned earlier in Section 3.1, after

fit-sorting (if any), about 75% of the fit-sorted used cash is fit cash and the remaining

25% is unfit cash, (iii) decides the quantity of fit-sorted cash to be placed in custodial

inventory. Thus, the remainder of the fit-sorted cash will be directly placed in the

DI’s fit-cash inventory, (iv) decides the quantities of used cash and unfit cash to be

deposited to the Fed, the quantity of fit cash to be withdrawn from the Fed, and the

quantity of fit cash to be withdrawn from custodial inventory.

• After notified by the DI about the decisions above, the 3PLP takes the following actions

(in the given order) by the beginning of Period t + 1: (i) fit-sorts the used cash and

places the resulting fit cash (resp., unfit cash) in custodial inventory and/or fit-cash

inventory (resp., unfit cash inventory) based on the DI’s preference, (ii) if required,

transports the used cash and/or unfit cash from the DI to the Fed and withdraws fit

cash from the Fed. By the beginning of the Period t + 1, the DI receives the fit cash

(if any) withdrawn from the Fed.

• During Period t+1, the DI uses the fit-cash inventory as well as custodial inventory to

satisfy demand (from customers) and collects the used cash deposited (by customers).
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Note: In RM, the DI maintains two types of fit cash inventories: the regular fit cash in its

own vault and the fit cash in custodial inventory (managed by the 3PLP). We use If
t (to

retain the same notation as in BM) to denote the former and Ic
t to denote the latter.

Notation

For consistency, the basic notation is the same as that defined for BM in Section 3.2.1. We,

therefore, define only the additional notation required for RM.

Parameters:

sr Setup cost for fit-sorting.
sc Setup cost for withdrawal from custodial inventory.
hc Per bundle per period custodial inventory holding cost.
r Per bundle fit-sorting cost.

Decision Variables:

xn
t The quantity of unfit cash (in bundles) deposited to the Fed at the end of

Period t, t = 0, 1, . . . , T .
xr

t The quantity of used cash (in bundles) fit-sorted at the end of Period t, t =
0, 1, . . . , T .

xc+
t The quantity of fit cash (in bundles) deposited to custodial inventory at the

end of Period t, t = 0, 1, . . . , T .
xc−

t The quantity of fit cash (in bundles) from custodial inventory needed to satisfy
fit-cash demand during Period t + 1, t = 0, 1, . . . , T − 1. This decision is made
at the end of Period t. For convenience of notation, we let xc−

T = 0.

X The solution vector (xu
t , x

f
t , x

n
t , x

r
t , x

c+
t , xc−

t ), t = 0, 1, . . . , T , which includes all
the decisions made during the planning horizon.

Other Notation:

yo
t yo

t = 0, if xu
t = xf

t = xn
t = 0, t = 0, 1, . . . , T ; yo

t = 1, otherwise.
yc

t yc
t = 1, if xc−

t > 0, t = 0, 1, . . . , T ; yc
t = 0, otherwise.

yr
t yr

t = 1, if xr
t > 0, t = 0, 1, . . . , T ; yr

t = 0, otherwise.
In
t The inventory of unfit cash (in bundles) at the end of Period t, t = 0, 1, . . . , T .

Ic
t The custodial inventory (in bundles) at the end of Period t, t = 0, 1, . . . , T .

Hc
t The cost charged by the 3PLP for holding custodial inventory during Period t.

Oc
t The ordering cost charged by the 3PLP for withdrawal from custodial inventory

during Period t.
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Ft The cost charged by the 3PLP for fit-sorting cash at the end of Period t− 1.
Without loss of generality, this cost is charged to Period t.

Ct The total cost incurred during Period t. Thus, Ct = Ht+Hc
t +Ot+Oc

t +Rt+Ft.

Cost Calculation

The total cost over the planning horizon is the sum of the following six costs:

1. Holding cost for used cash, (regular) fit cash, and unfit cash: H =
∑T

t=0[0.5h(2Iu
t −

du
t ) + 0.5h(2If

t + df
t − xc−

t−1) + hIn
t ].

Note: Since the inventory of used cash at the end of Period t is Iu
t , and the deposit

of used cash during Period t is du
t , retrospectively, at the beginning of Period t, the

inventory is Iu
t − du

t . Thus, the average inventory of used cash during Period t is

0.5(2Iu
t − du

t ). Similarly, there is If
t regular fit cash at the end of Period t and the

customers withdraw df
t during Period t. Since the withdrawal of xc−

t−1 from custodial

inventory is also used to satisfy the customers’ demand, retrospectively, at the begin-

ning of Period t, the fit-cash inventory is If
t +df

t −xc−
t−1. Thus, the average inventory of

fit cash during Period t is 0.5(2If
t + df

t − xc−
t−1). Since there is no change to unfit-cash

inventory during a period, the average inventory of used cash during Period t is In
t .

2. Custodial inventory holding cost: Hc =
∑T

t=0 0.5hc(2I
c
t + xc−

t−1).

Note: Since the custodial inventory at the end of Period t is Ic
t , and xc−

t−1 custodial

inventory is withdrawn during Period t to satisfy the customers’ demand, retrospec-

tively, at the beginning of Period t, the custodial inventory is Ic
t + xc−

t−1. Thus, the

average custodial inventory during Period t is 0.5(2Ic
t + xc−

t−1).
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3. Ordering cost: O =
∑T

t=0 syo
t .

4. Custodial inventory setup cost: Oc =
∑T

t=0 scy
c
t .

5. Cross-shipping cost: R =
∑T

t=0 e min{ρxu
t , x

f
t }.

6. Fit-sorting cost: F =
∑T

t=0(sry
r
t + rxr

t ).

3.3.2 Computational Complexity and a Structural Property of RM

From the precise description above, it is intuitive that the decisions in RM are significantly

more complex than those in BM. The following result corroborates this intuition by formally

establishing the hardness of RM.

Theorem 3.3.1 The decision problem corresponding to RM is NP-Complete.

Proof: The NP-Complete problem which we use in our reduction is the Partition Prob-

lem (Garey and Johnson, 1979).

Partition Problem (PP)

Instance: A set of positive integers A = {a1, a2, . . . , an}, a positive integer B, such that

∑n
i=1 ai = 2B.

Solution: A subset A1 ⊂ A, such that
∑

ai∈A1
ai = B.

Given an arbitrary instance of PP, we construct an instance of RM as follows. Let T = n+2.

du
1 = 4

3
B, du

2 = du
3 = . . . = du

n+2 = 0. df
1 = df

2 = 0, df
3 = a1, d

f
4 = a2, . . . , d

f
n+2 = an. Let

sr = 0, r = 0, hc = 0, s = sc = 1, h ≥ 2n + 3. For the constructed instance, we consider the

following decision question.
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Decision Question: Let D = 7
6
hB + n + 1. Does there exist a solution X for RM such

that C(X) ≤ D?

The construction of the decision problem from the given instance of PP is polynomially

bounded. The decision question, therefore, is in class NP. We now show that the deci-

sion question has an affirmative answer if and only if the set A has a subset A1 such that

∑
ai∈A1

ai = B.

⇐= Let A1 ⊂ A be such that
∑

ai∈A1
ai = B. We let n1 = |A1|, the number of elements

in set A1. Consider the following solution of the constructed instance of RM: X = {xr
1 =

4
3
B; xc+

1 = B; xn
1 = 1

3
B; xf

1+i = ai, ai ∈ A1; x
c−
1+i = ai, ai ∈ A\A1; all other decision variables

are 0}. The solution X can be interpreted as follows. At the end of Period 1, the DI fit-sorts

all the used cash it collects during that period, places all the resulting fit cash in custodial

inventory, and deposits the unfit cash to the Fed. For t ∈ {3, 4, . . . , n+2}, the DI withdraws

just enough fit cash to satisfy the demand of that period either entirely from the Fed at the

end of Period t− 1 or entirely from custodial inventory during Period t.

For the solution X, the holding cost is incurred from two sources: the holding cost for

used cash during Period 1 and the holding cost for fit cash during the periods when we use

withdrawal from the Fed to satisfy fit-cash demand. Thus, H(X) = 1
2
h(du

1 +
∑n+2

t=2 xf
t ) =

1
2
h(4

3
B +B) = 7

6
hB. Since hc = 0, we have Hc(X) = 0. Also, R(X) = 0, F (X) = 0, O(X) =

s(1 + n1) = 1 + n1, O
c(X) = sc(n− n1) = (n− n1). Thus, the total cost of X is:

C(X) = H(X) + Hc(X) + R(X) + F (X) + O(X) + Oc(X)

=
7

6
hB + 0 + 0 + 0 + (1 + n1) + (n− n1) =

7

6
hB + n + 1 = D
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=⇒ Suppose X is a solution of RM such that C(X) ≤ D. The following claims help us to

characterize the required set A1.

Claim 3.3.1 xu
t = 0, t = 0, 1, . . . , n + 2.

Proof: Since the sum of all used cash deposits over the planning horizon is an obvious

upper bound on the total fit-sorted cash, we have
∑n+1

t=0 xr
t ≤

∑n+2
t=1 du

t = 4
3
B. The fit cash

placed in custodial inventory has to necessarily come from fit-sorting; thus,
∑n+1

t=0 xc−
t ≤

∑n+1
t=0 xc+

t ≤ 3
4

∑n+1
t=0 xr

t = B. Also since the demand of fit cash has to be satisfied by

withdrawals either from the Fed or from custodial inventory, we have
∑n+1

t=0 xf
t +

∑n+1
t=0 xc−

t =

∑n+2
t=1 df

t =
∑n

i=1 ai = 2B. Consequently, we have
∑n+1

t=0 xf
t = 2B−∑n+1

t=0 xc−
t ≥ 2B−B = B.

When we withdraw xf
t fit cash from the Fed at the end of Period t, we incur a holding cost

of at least 1
2
hxf

t during Period t + 1. Similarly, we incur a holding cost of at least 1
2
hdu

1 for

used cash during Period 1. Thus,

C(X) ≥ 1

2
h

n+1∑
t=0

xf
t +

1

2
hdu

1 =
1

2
h

n+1∑
t=0

xf
t +

2

3
hB.

Assume
∑n+1

t=0 xf
t > B. Then, we have

∑n+1
t=0 xf

t ≥ B + 1 since all decision variables are

integral. Since h ≥ 2n + 3, we have

C(X) ≥ 2

3
hB +

1

2
h

n+1∑
t=0

xf
t ≥

2

3
hB +

1

2
hB +

1

2
h >

7

6
hB + n + 1 = D,

which contradicts C(X) ≤ D. Therefore,
∑n+1

t=0 xf
t = B. Then,

∑n+1
t=0 xc−

t = 2B−∑n+1
t=0 xf

t =

B. Consequently,
∑n+1

t=0 xc+
t = B and

∑n+1
t=0 xr

t = 4
3
B. Since

∑n+1
t=0 xr

t +
∑n+2

t=0 xu
t =

∑n+2
t=1 du

t ,

we have
∑n+2

t=0 xu
t = 4

3
B − 4

3
B = 0. Thus, xu

t = 0, t = 0, 1, . . . , n + 2.

Claim 3.3.2 xf
0 = xf

1 = xc−
0 = xc−

1 = 0; xr
1 = 4

3
B, xr

t = 0, t = 2, 3, . . . , n + 2; xc+
1 = B,

xc+
t = 0, t = 2, 3, . . . , n + 2; xn

1 = 1
3
B, xn

1 = 0, t = 2, 3, . . . , n + 2.
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Proof: From Claim 3.3.1, we have C(X) ≥ 2
3
hB + 1

2
h

∑n+1
t=0 xf

t = 7
6
hB. Moreover, a holding

cost of at least 1
2
hIf

t (resp., 1
2
hIu

t , 1
2
hIn

t ) is incurred on the fit-cash inventory (resp., used-cash

inventory, unfit-cash inventory) during Period t. Thus,

C(X) ≥ 7

6
hB +

1

2
h(

n+2∑
t=1

If
t +

n+2∑
t=1

In
t +

n+2∑
t=2

Iu
t ).

Using an argument similar to that in the proof of Claim 6, we have
∑n+2

t=1 If
t +

∑n+2
t=1 In

t +

∑n+2
t=2 Iu

t = 0. Thus, If
t = 0, t = 1, 2, . . . , n + 2; In

t = 0, t = 1, 2, . . . , n + 2; Iu
t = 0, t =

2, 3, . . . , n + 2.

Since If
1 = If

2 = 0, df
1 = df

2 = 0, there is no withdrawal of fit cash either from the Fed

at the end of Periods 0 and 1 or from custodial inventory during the Periods 1 and 2, i.e.,

xf
0 = xf

1 = xc−
0 = xc−

1 = 0. Since 0 = Iu
2 = Iu

1−xu
1−xr

1+du
2 = 4

3
B−0−xr

1+0, we have xr
1 = 4

3
B.

From Claim 3.3.1, we have
∑n+1

t=0 xr
t = 4

3
B; thus, xr

t = 0, t = 2, 3, . . . , n + 2. Since xc+
t ≤ xr

t ,

we have xc+
t = 0, t = 2, 3, . . . , n + 2. Since 0 = If

2 = If
1 + 0.75xr

1 − xc+
1 + xf

1 + xc−
1 − df

2 =

0 + B − xc+
1 + 0 + 0 − 0, we have xc+

1 = B. Using 0 = In
t+1 = In

t + 0.25xr
t − xn

t , we have

xn
1 = 1

3
B, xn

t = 0, t = 2, 3, . . . , n + 2.

Claim 3.3.3
∑n+1

t=2 xf
t = B,

∑n+1
t=2 xc−

t = B. If xc−
t > 0, then xc−

t = df
t+1, 2 ≤ t ≤ n + 1.

Proof: From Claim 3.3.1, we have
∑n+1

t=0 xf
t = B,

∑n+1
t=0 xc−

t = B. From Claim 3.3.2, we have

xf
0 = xf

1 = xc−
0 = xc−

1 = 0. Thus,
∑n+1

t=2 xf
t = B and

∑n+1
t=2 xc−

t = B.

Since If
t = 0, t = 1, 2, . . . , n + 2, we do not have positive fit cash inventory at the end of

these periods. Then, for each period t ∈ {3, 4, . . . , n+2}, since df
t > 0, fit cash is withdrawn

either from the Fed at the end of Period t − 1 or from custodial inventory during Period t

to satisfy the fit-cash demand of that period. Thus, for t ∈ {3, 4, . . . , n + 2}, we incur either



www.manaraa.com

85

the ordering cost or setup cost for withdrawal from custodial inventory (or both) during

Period t. Thus, Ot(X) + Oc
t (X) ≥ 1, for 3 ≤ t ≤ n + 2. Suppose, in X, there exists some

t̃ such that xc−
t̃

> 0 and xc−
t̃

< df

t̃+1
. Then, we have xf

t̃
= df

t̃+1
− xc−

t̃
> 0. Thus, during

Period t̃ + 1, both the setup costs s and sc are incurred, i.e., Ot̃(X) + Oc
t̃
(X) = 2. Thus,

C(X) ≥ 7
6
hB + 1 + 2 + (n− 1) > D, which contradicts C(X) ≤ D. The result now follows.

Let I = {i|xc−
i+1 > 0}, A1 = {ai|i ∈ I}. As a consequence of Claim 3.3.3, we have

∑n+1
t=2 xc−

t =

∑
i∈I df

i+2 = B. Since df
i+2 = ai, i = 1, 2, . . . , n, we have

∑
ai∈A1

ai = B. This concludes the

proof of Theorem 3.3.1.

We now prove a structural property of RM.

Theorem 3.3.2 If r < eρ, then there exists an optimal solution, say X, of RM such that

xf
t = 0 or xu

t = 0 or xr
t = 0 for t = 1, 2, . . . , T .

Proof: Consider an arbitrary solution X of RM and let t be the period such that xf
t > 0,

xu
t > 0, and xr

t > 0. Let γ = min{1
ρ
xf

t , x
u
t } and consider another solution X̄ of RM, defined as

follows. Let x̄u
t = xu

t −γ; x̄r
t = xr

t +γ; x̄f
t = xf

t −ργ; x̄n
t = xn

t +(1−ρ)γ; x̄u
i = xu

i , x̄
r
i = xr

i , x̄
f
i =

xf
i , x̄

n
i = xn

i , i ∈ {1, 2, . . . , T}\{t}; x̄c+
i = xc+

i ; x̄c−
i = xc−

i , i = 1, 2, . . . , T . Thus, we have either

x̄u
t = 0 or x̄f

t = 0. Since xu
t > 0 and x̄n

t > 0, we have Ot+1(X̄)−Ot+1(X) = s− s = 0. Also,

xr
t > 0 and x̄r

t = xr
t +γ > 0. Hence, we have Ft+1(X̄)−Ft+1(X) = (sr+rx̄r

t )−(sr+rxr
t ) = rγ.

Next, note that Rt+1(X̄) − Rt+1(X) = e(min{ρxu
t − ργ, xf

t − ργ} −min{ρxu
t , x

f
t }) = −eργ.

Furthermore, H(X̄)−H(X) = 0, Hc(X̄)−Hc(X) = 0, and Oc(X̄)−Oc(X) = 0. Therefore,

C(X̄)−C(X) = Ot+1(X̄)−Ot+1(X)+Ft+1(X̄)−Ft+1(X)+Rt+1(X̄)−Rt+1(X) = (r−eρ)γ.

Hence, if r < eρ, we have C(X̄)− C(X) < 0, which implies X̄ is a better solution than X.
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Thus, in the solution X of RM, if r < eρ and there exists some t with xf
t > 0, xu

t > 0, and

xr
t > 0, then it is possible to obtain a better solution (X̄) in which at least one of xf

t , x
u
t , and

xr
t , is zero for t = 1, 2, . . . , T . To conclude the proof, note that the above argument can be

applied repeatedly if there exist multiple periods that satisfy xf
t > 0, xu

t > 0, and xr
t > 0.

Theorem 3.3.2 can be intuitively interpreted in the following manner: If the cost of fit-sorting

one extra bundle of used-cash (i.e., r, the per bundle fit-sorting cost) is less than the marginal

saving from using the resulting fit cash to reduce cross-shipping (i.e., eρ, the product of the

per bundle cross-shipping cost and the percentage of fit cash in the used cash), then a DI

will not both deposit used-cash and withdraw fit-cash in the same period. For otherwise, fit-

sorting an extra bundle and, thereby, reducing the amount of fit-cash withdrawal results in

a better solution. Using this argument iteratively, we can conclude that either the quantity

of used-cash deposit or the quantity of fit-cash withdrawal becomes 0, which implies that

cross-shipping is eliminated in that period.

Theorem 3.3.1 above, together with the significant recent advances in computational integer

programming motivate us to formulate RM as a mixed-integer program.

3.3.3 Formulating RM as a Mixed-Integer Program (MIP)

We retain most of the notation from Sections 3.2.1 and 3.3.1, and only define the additional

notation required for the formulation.

Additional Notation:

zt zt = 1, if xf
t ≤ xu

t , t = 0, 1, . . . , T ; zt = 0, otherwise.
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The Objective Function

Our objective is to minimize the sum of six types of costs (see Section 3.3.1), i.e.,

min (O + Oc + H + Hc + F + R)

Constraints

We have five main classes of constraints.

1. Inventory Balance Constraints:

Recall that all the inventories are counted at the end of each period and before any

decisions are taken. There are four types of inventories.

(i) Used Cash Inventory Balance:

Iu
t+1 = Iu

t − xr
t − xu

t + du
t+1 t = 0, 1, . . . , T − 1

(ii) Unfit Cash Inventory Balance:

In
t+1 = In

t + 0.25xr
t − xn

t t = 0, 1, . . . , T − 1

(iii) Fit Cash Inventory Balance:

If
t+1 = If

t + 0.75xr
t − xc+

t + xf
t + xc−

t − df
t+1 t = 0, 1, . . . , T − 1

(iv) Custodial Inventory Balance:

Ic
t+1 = Ic

t + xc+
t − xc−

t t = 0, 1, . . . , T − 1
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2. Cross-Shipping Constraints:

Recall that Rt+1 = e min{0.75xu
t , x

f
t }. Since we are minimizing the objective function,

this constraint can be replaced by the following two constraints:

Rt+1 ≥ 0.75e(xu
t − zt

T∑
t=1

du
t ) t = 0, 1, . . . , T − 1

Rt+1 ≥ e[xf
t − (1− zt)

T∑
t=1

df
t ] t = 0, 1, . . . , T − 1

3. Constraints for Fit-Sorting:

At the end of each period, the sum of the quantity fit-sorted and the quantity of

used-cash deposited cannot exceed the available used-cash inventory.

xu
t + xr

t ≤ Iu
t t = 0, 1, . . . , T

The quantity of fit cash placed in custodial inventory cannot exceed the quantity of

fit-sorted cash.

xc+
t ≤ 0.75xr

t t = 0, 1, . . . , T − 1

4. Constraints for Computing Setup and Ordering Costs:

We have 3 types of setup and ordering costs:

(i) At the end of Period t, an ordering cost is charged if the DI requests the 3PLP to

conduct any of the following three activities: (1) deposits used cash to the Fed,

(2) deposits unfit cash to the Fed, (3) withdraws fit cash from the Fed.

Thus,
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xu
t + xn

t ≤ yo
t

T∑
t=1

du
t t = 0, 1, . . . , T − 1

xf
t ≤ yo

t

T∑
t=1

df
t t = 0, 1, . . . , T − 1

(ii) At the end of Period t, a setup cost for custodial inventory is charged if the DI

requests to withdraw from its custodial inventory. Thus,

xc−
t ≤ 0.75yc

t

T∑
t=1

du
t t = 0, 1, . . . , T − 1

(iii) At the end of Period t, a setup cost for fit-sorting is charged if the DI requests

the 3PLP to conduct fit-sorting. Thus,

xr
t ≤ yr

t

T∑
t=1

du
t t = 0, 1, . . . , T − 1

5. Non-Negativity and 0-1 Restrictions:

xu
t , x

f
t , x

r
t , x

c+
t , xn

t , x
c−
t ≥ 0 t = 0, 1, . . . , T − 1

If
t , Ic

t , I
n
t ≥ 0 t = 0, 1, . . . , T − 1

yo
t , y

c
t , y

r
t , zt ∈ {0, 1} t = 0, 1, . . . , T − 1

As will be seen in the next section, CPLEX (version 11.1.1) is able to solve realistic instances

of RM in reasonable time. Our ability to solve instances of BM and RM to optimality allows

us to evaluate the impact of local reuse of cash and derive a variety of insights on the forces

that influence the volume of cross-shipping. This will be our goal in the next section.
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3.4 Understanding the Value of Local Reuse and Influences on the Volume of

Cross-Shipping

Recall that a DI may choose not to fit-sort its used-cash deposits and, instead, opt to

pay recirculation fees for cross-shipping. To resolve the question of whether or not to fit-

sort, it becomes important for managers of DIs to quantify the impact of fit-sorting and

participating in the custodial inventory program. Subsequently, if the DI decides to fit-sort,

the optimal amount to fit-sort and the influence of the problem parameters on the volume

of cross-shipping helps understand the various tradeoffs involved. We address these issues

via a comprehensive numerical study.

An ideal metric, which we refer to as the Value of Local Reuse (VoR), to capture the

monetary impact from implementing fit-sorting and custodial inventory is the percentage

cost saving offered by RM over BM. That is,

VoR =
(Objective Value of BM - Objective Value of RM)× 100%

Objective Value of BM
.

Similarly, the Extent of Local Reuse (EoR) is the percentage of fit cash demand satisfied

by fit-sorting (i.e., by local recirculation) in RM. Since about 75% of the used-cash is fit-cash

(Section 3.1), we have

EoR =
(Total Quantity Fit-Sorted over the Planning Horizon)× 75%

The Total Demand of Fit Cash over the Planning Horizon
.

Another characteristic that is expected to influence the extent of cross-shipping for a DI is

the imbalance between its average per-period deposit and demand. Accordingly, we define

a DI’s Imbalance Ratio, α, as follows:
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α =
Average Per-Period Used Cash Deposit

Average Per-Period Fit-Cash Demand
.

We first describe our test bed in Section 3.4.1 and then discuss the results and insights in

Section 3.4.2.

3.4.1 The Test Bed

To ground our test bed in reality, we use information from the Fed’s publicly-available

documents (Federal Reserve 2006, 2009) and also from the relevant literature (Mehrotra et

al. 2010, Dawande et al. 2010).

As mentioned in Section 3.1, the weekly demand of fit cash for medium-size DIs is typically

between 1000 to 2000 bundles. Thus, we choose the weekly demand of fit cash (in bundles)

randomly from U [1000, 2000]. As observed in Mehrotra et al. (2010), discussions with

practitioners indicate that there is little week-to-week variation in the value of the ratio α

(defined above) for a specific DI; however, across DIs, the value of α may vary and typically

ranges between 1 and 3. Accordingly, we consider four values of α: 1, 1.5, 2, and 3. Thus,

the weekly deposit of used cash is generated randomly from U [1000α, 2000α]. We consider

three possible values for the length of the planning horizon, T : 5, 10, 15.

To evaluate the impact of the cross-shipping fee e on the optimal solution, we consider

three values: $5 (the current value), $6, and $7. The dominant component of a DI’s per-

bundle holding cost, h, of fit cash is the cost of lost opportunity of lending via the Federal

Funds Market. Between 1994 to 2008, the annual Federal Funds Rate has varied between
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a minimum of 1.13% and a maximum of 6.24% (Federal Reserve 2010a). Currently (2009

and early 2010), this rate is below 1%, influenced largely by the economic downturn that

started in late 2007. Assuming a rate of 1%, the holding cost per-bundle per-period (week) is

$20×1000×1%/50 = $4. Anticipating a moderate rise of this rate in the future, we consider

two additional values: 3% and 5%. Thus, we consider three values of h: $4, $12, and $20.

Based on discussions with a secure-logistics provider, we choose three values of the fixed

ordering cost, s, of transportation: $1500, $2000, $2500. For a fair comparison of the two

models (BM and RM) for assessing the value and extent of reuse, we avoid varying those

parameters that are relevant only to RM, namely hc, r, sr, and sc (Section 3.3.1). Recall

that deposits to custodial inventory are credited to the DI’s account with the Fed and can

be lent (to other institutions) by the DI. Hence, such deposits incur no cost of lost lending

opportunity. Consequently, the per-bundle per-period holding cost of custodial inventory, hc,

is only the physical storage cost, which we set at $1. The per-bundle fit-sorting fee, r, is set

at $2. Both the setup costs sc and sr are administrative fees that are expected to be modest;

we fix them to $200 and $1000, respectively. For each combination of the horizon-length T

and the imbalance ratio α, we generate 5 instances of demand data. For each instance of

demand data, we have 3 × 3 × 3 = 27 combinations of the parameter settings above, for a

total of 3× 4× 5× 27 = 1620 instances.

In Section 3.4.2, when assessing the sensitivity of the cross-shipping volume, we fix e at $5

and the values of T and α at their baseline values of 10 and 1.5, respectively, and vary only

the values of s, h, and r. Thus, the total number of instances considered for this second

experiment is 5× 3× 3× 4 = 180.
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Table 3.1. Parameter Settings to Quantify the Value of Local Reuse and the Sensitivity of
the Volume of Cross-Shipping.

Parameter Values Parameter Values Parameter Value

T 5, 10, 15 h $4, $12, $20 sr $1000
α 1, 1.5, 2, 3 s $1500, $2000, $2500 hc $1
r $2, $3, $4, $5 e $5, $6, $7 sc $200

Table 3.1 summarizes the representative values of the parameters used in our computational

study.

3.4.2 Results

CPLEX (version 11.1.1) was able to optimally solve the MIPs corresponding to the instances

of RM in a reasonable amount of time. The instances of BM were solved using the dynamic

programming formulation of Section 3.2.

The Value and Extent of Local Reuse

For the instances in our test bed, VoR ranges between 14.9% and 36.4%. Over all the

1620 instances, both the mean and median are around 26.6%. EoR ranges between 41.3%

and 100%, with mean and median values of 82.2% and 90.5%, respectively. We, therefore,

conclude that the saving for a DI from implementing fit-sorting and custodial inventory as

well as the extent of local recirculation are substantial. Indeed, our results confirm the ability

of the Fed’s policy to generate a welfare-like situation. From the viewpoint of DIs, substantial

reuse is beneficial under the Fed’s policy since this is the optimal choice. In turn, the 3PLPs

benefit from the new fit-sorting business opportunity. Finally, the Fed too furthers its goal

of reducing the social cost of providing currency to the public.
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Figure 3.2. Impact of Imbalance and Length of Planning Horizon on Value and Extent of
Local Reuse.

The imbalance ratio, α, is a good metric to highlight the relative differences between the

behavior of VoR and EoR. We have VoR at its highest when α = 1.5 (Figure 3.2(a)). To

understand this, consider a scenario where the used-cash deposit in a week is consistently

about 1/75% = 1.33 times the fit-cash demand in the next week. Then, by fit-sorting all the

used-cash deposit each week, the DI can satisfy its fit-cash demand and completely eliminate

the transportation – to and from the Fed – of fit cash and used cash. This simple observation

is quite helpful. When the per-week supply of used cash is about the same as the demand

for fit cash (i.e., α = 1), the DI cannot generate enough fit cash from local reuse to meet its

demand. Recall that about 75% of the quantity fit-sorted is fit-cash. Thus, for α = 1, EoR

has an upper bound of around 75% (Figure 3.2(b)), which implies that a maximum of 75%

of the fit-cash demand is satisfied by fit-sorting. Thus, it becomes necessary for the DI to

withdraw fit cash from the Fed and, consequently, incur transportation cost. On the other

hand when α is too high (say, α ∈ {2, 3}), although the DI can satisfy all of its fit-cash

demand by local reuse (i.e., EoR ≈ 1), there is too much used cash at hand. This excess

used cash must be deposited to the Fed which, again, implies an increase in transportation

cost. Thus, the DI incurs additional costs at extreme values of α. When α = 1.5, the deposit
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of used cash is just of the correct magnitude to enable the DI to generate the required fit

cash by local reuse. Thus, in this latter case, the shipment activity (if any) between the DI

and the Fed are much less frequent than that in the former extreme cases. To summarize,

VoR is at its highest when the imbalance between the used-cash deposit and fit-cash demand

is just enough for the DI to effectively satisfy all demand via local reuse.

Another observation from Figure 3.2(a) is that VoR increases with the length of planning

horizon. This is intuitive, since a longer planning horizon implies more opportunities to

combine orders and enable better decisions. Figure 3.2(b) also shows that even with enough

used cash (i.e., α > 1.5), the DI still does not fully use local reuse to satisfy its fit-cash

demand (EoR ≈ 0.80). The reason is that a DI may prefer to fit-sort less when the per-

bundle per-period holding cost of fit cash (h) is low. Fit-sorting enables the DI to store fit

cash in custodial inventory, which has a much lower holding cost than the regular inventory.

However, to exploit this, the DI may have to fit-sort in advance and keep fit cash in the

custodial inventory for multiple periods. On the other hand, fit cash ordered from the Fed

needs to be kept in the regular inventory but for a shorter time (e.g., one period). When h

is low, the cost of holding fit cash for a longer time in custodial inventory can exceed that of

holding it for a shorter time in regular inventory. Thus, withdrawing fit cash from the Fed

to satisfy fit-cash demand becomes preferable.

Influences on the Volume of Cross-Shipping

To understand the combination of forces that influence the volume of cross-shipping, we first

examine the impact of the fit-sorting cost on the optimal solution. When the per-bundle
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cost of fit-sorting increases, if the DI intends to maintain the same level of reuse, then it

is immediate that the total fit-sorting cost will increase. Thus, one option to reduce the

total cost is to reduce the fit-sorting volume over the planning horizon. This reduces one or

both of the fixed and variable costs of fit-sorting. However, reducing the fit-sorting volume

implies the following two consequences: (1) with less fit cash from fit-sorting, the DI has to

withdraw more fit cash from the Fed to meet its demand and (2) the DI has more inventory

of used cash which needs to be eventually deposited to the Fed. In turn, these outcomes can

increase the total cost in two possible ways: (i) if the DI decides to deposit used cash and

withdraw fit cash near-simultaneously (i.e., within the same week), then the cross-shipping

cost and (possibly) the ordering cost will increase, (ii) if the DI can avoid cross-shipping by

either postponing the deposit of used cash or withdrawing fit cash in advance, the holding

cost will increase. Thus, the DI faces a healthy tradeoff from reducing the fit-sorting volume.

The previous discussion suggests that the combined influence of per-bundle fit-sorting cost

(r) and the per-bundle holding cost (h) may be the force that decides the volume of cross-

shipping. Comparing the optimal solutions of RM over different values of r and h leads to

two interesting observations: (1) when the per-bundle holding cost is very low, the volume of

cross-shipping, the total holding cost as well as the number of orders increase with fit-sorting

cost, while the volume of fit-sorting and the volume in custodial inventory decrease with fit-

sorting cost, (2) when the per-bundle holding cost is very high, RM retains the same optimal

solution even when the fit-sorting cost varies. We now provide an intuitive explanation for

these two observations: When r has its minimum value, we have r ¿ min{h, e}. Thus,

fully exploiting fit-sorting to satisfy fit-cash demand is most economical for the DI. When
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r increases, the DI may consider the option of reducing the fit-sorting volume, which, as

discussed above, will increase either the holding cost or the cross-shipping cost. When the

per-bundle holding cost (h) is very high, it still significantly dominates the increased r.

Thus, increasing inventory cost becomes uneconomical. The other option – increasing cross-

shipping – leads to an increase that dominates the savings resulting from the reduction in

the fixed and variable costs of fit-sorting. Consequently, the DI chooses to maintain the

maximum level of fit-sorting, resulting in the same optimal solution. However, when the

per-bundle holding cost is low, the DI can tolerate an increase in inventory costs. Therefore,

as r increases, the progressively larger impact of reducing the fit-sorting cost (by reducing

the fit-sorting volume) begins to dominate the combined increase in the ordering, holding,

and cross-shipping costs. As a result, the DI chooses to fit-sort less and, instead, increase

the volume of cross-shipping. To summarize, the impact of changing the fit-sorting cost on

the volume of cross-shipping is governed by the ratio of the holding cost and the fit-sorting

cost. As long as the holding cost continues to significantly dominate fit-sorting cost, there

is little or no change in the volume of cross-shipping as the fit-sorting cost increases. When

the holding cost is comparable to fit-sorting cost, an increase in the fit-sorting cost leads to

a consistent increase in the volume of cross-shipping.

Figure 3.3 confirms our interpretation. The percentage of instances with zero cross-shipping

volume for each value of r and h is illustrated in Figure 3.3(a). At a high holding cost, we have

a complete absence of cross-shipping as the per-bundle fit-sorting cost varies over its range.

However, when the holding cost is low, the percentage of instances with zero cross-shipping

cost decreases with the fit-sorting cost. To further explore the latter case, we illustrate the
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Figure 3.3. Impact of Per-Bundle Fit-Sorting Cost (r) and Per-Bundle Holding Cost (h) on
Cross-Shipping.

average volume of cross-shipping when the holding cost is low in Figure 3.3(b). As can be

clearly seen, the marginal increase in the average volume of cross-shipping increases with an

increase in the fit-sorting cost.

Our discussion thus far assumes that the weekly values of used-cash deposit and fit-cash

demand during the planning horizon can be forecasted with reasonable accuracy. To adapt

the decisions from our models to a real-time scenario, we now develop a rolling-horizon

procedure that allows for a limited extent of uncertainty in these two forecasts.

3.5 A Rolling-Horizon Procedure for Real-Time Decisions

In this section, we assume that the actual value of the deposit (resp., demand) in a week varies

between a pair of lower and upper bounds (that depend on the week). These bounds can be

forecasted at the beginning of the planning horizon and updated throughout the horizon (if

necessary). Also, in practice, managers prefer a scheme which can incorporate information

(e.g., realized demand) as and when it becomes available. Thus, a rolling-horizon procedure

which offers an iterative decision-making environment is an ideal technique to adapt our
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models for real-time decisions. Under this procedure, we first solve a τ -period problem, for

some constant τ ≥ 1, by using the initial inventories and the forecasted demand/deposit data

for Periods 1 through τ . Although the decisions for the first τ periods are then available, we

only implement the decisions for the first period. After the actual demand/deposit for the

first period are realized, we observe the inventories at the end of Period 1 and solve another τ -

period problem by using the (possibly updated) demand/deposit data for Periods 2 through

τ + 1. The iterative process continues in this manner and can be applied over an infinite

horizon or a finite, T -period horizon. The τ -period problem encountered in each iteration is

referred to as the rolling-horizon problem.

In this section, we first describe the construction of the rolling-horizon problem (Section 3.5.1)

and then provide an iterative procedure that adapts solutions of this problem for real-time

decisions (Section 3.5.2). Finally, we show – if the widths of the interval forecasts over the

planning horizon are modest – that our procedure provides near-optimal, real-time solutions

to arbitrary realized instances (Section 3.5.3).

3.5.1 A τ-Period Rolling-Horizon Problem Based on Forecasted Data

We retain the same basic notation as in Section 3.3.1 and only define the additional notation

needed.

For the first period of a τ -period rolling horizon problem, if the realized fit-cash demand

exceeds the projected demand, decisions that are based on the projected demand but are used

for the realized demand may cause an infeasibility (due to lack of the required fit cash). One
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Additional Notation:

κu
t , d̄

u
t , ν

u
t The forecasted lower bound, average, and upper bound of deposit

of used cash (in bundles) from the DI’s customers during Period t,
t = 1, 2, . . . , T .

κf
t , d̄

f
t , ν

f
t The forecasted lower bound, average, and upper bound of demand

of fit cash (in bundles) for the DI’s customers during Period t,
t = 1, 2, . . . , T .

ηu
t The actual deposit of used cash (in bundles) from the DI’s cus-

tomers during Period t, t = 1, 2, . . . , T .

ηf
t The actual demand of fit cash (in bundles) for the DI’s customers

during Period t, t = 1, 2, . . . , T .

simple way to avoid such an infeasibility is to develop a solution that uses the upper bound

of fit-cash demand for the first period. Since we need to implement only the decisions for

the first period, we can safely use the forecasted average fit-cash demands for the remaining

τ − 1 periods. Also, we use the forecasted average used-cash deposits for the τ periods.

Thus, given forecasted used-cash deposits of the first τ periods, (κu
t , d̄

u
t , ν

u
t ), 1 ≤ t ≤ τ , and

forecasted fit-cash demands of the first τ periods, (κf
t , d̄

f
t , ν

f
t ), 1 ≤ t ≤ τ , we generate a

τ -period rolling-horizon problem using the following data: du
t = d̄u

t , 1 ≤ t ≤ τ ; df
1 = νf

1 ;

df
t = d̄f

t , 2 ≤ t ≤ τ .

For BM, given the initial inventories Iu
0 and If

0 of used and fit cash, respectively, and the

deposit/demand data described above, we use the forward recursion described in Section 3.2.4

to solve the τ -period rolling-horizon problem. Similarly, for RM, given the initial inventories

of used cash, fit cash, unfit cash, and custodial inventory (i.e., Iu
0 , If

0 , In
0 , Ic

0, respectively),

and the deposit/demand data, we use the Mixed-Integer Program described in Section 3.2.4

to solve the rolling-horizon problem.
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3.5.2 A Rolling-Horizon Procedure

We now formally describe the rolling-horizon procedure for BM. The procedure for RM is

similar, except that we need to calculate two more types of inventories (In
t and Ic

t ) and record

four more types of decision variables (xr
t , xc+

t , xn
t , and xc−

t ); see Section 3.3.1. Therefore, for

brevity, we avoid an explicit description of the procedure for RM.

Procedure rolling horizon

Step 1. Let i = 1.

Step 2. Forecast the used-cash deposits and fit-cash demands for the next τ periods, i.e.,

(κu
t , d̄

u
t , ν

u
t ), (κf

t , d̄
f
t , ν

f
t ), i ≤ t ≤ i + τ − 1.

Step 3. Generate a τ -period problem, Pb, using Îu
0 = Iu

i−1, Î
f
0 = If

i−1; d̂u
j = d̄u

i+j−1, 1 ≤ j ≤ τ ;

d̂f
1 = νf

i ; d̂f
j = d̄f

i+j−1, 2 ≤ j ≤ τ .

Step 4. Solve Pb, implement the decisions for the first period, i.e., x̂u
0 , x̂

f
0 , and record

xu
i−1 = x̂u

0 , xf
i−1 = x̂f

0 .

Step 5. The actual used-cash deposit of Period i, ηu
i , and the actual fit-cash demand of

Period i, ηf
i are realized. Record ηu

i and ηf
i . Observe the ending inventories of used-cash and

fit-cash for Period i, Iu
i = Iu

i−1 − xu
i−1 + ηu

i , If
i = If

i−1 + xf
i−1 − ηf

i .

Step 6. If i = T , then exit; otherwise, i = i + 1, go to Step 2.

At the end of the Period T , we have the realized deposit/demand for the entire T -period

planning horizon, i.e., ηu
i , ηf

i , 1 ≤ i ≤ T . For comparison, we define Pa as the instance of

BM corresponding to the realized deposit/demand data (i.e., under the assumption that all

realized data is known with certainty a priori). By construction, the solution (xu
i , x

f
i ), 0 ≤

i ≤ T − 1 generated by Procedure rolling horizon is a feasible solution to Problem Pa.
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3.5.3 The Performance of Procedure rolling horizon

Except for the length of the planning horizon and the demands/deposits, we set the other

parameters of BM/RM to their baseline values of the test bed described in Section 3.4.1.

We set T to 100 as an approximation of a long-term horizon. For t = 1, 2, . . . , T , the

average demands, d̄f
t , of fit cash (in bundles) during Period t are randomly generated as

before from U [1000, 2000]. Corresponding to α = 1.5, the average deposits, d̄u
t , of used

cash (in bundles) are randomly generated from U [1500, 3000]. To indicate the varying ac-

curacies of the lower/upper bounds of the intervals in which the actual demands/deposits

lie, we consider symmetric intervals with widths (w; see Table 3.2) of 5%, 10% and 15%,

around the average demands/deposits. That is, we consider three intervals for the ac-

tual fit-cash demand ηf
t : [0.975d̄f

t , 1.025d̄f
t ], [0.95d̄f

t , 1.05d̄f
t ] and [0.925d̄f

t , 1.075d̄f
t ]. Simi-

larly, we consider three intervals for the actual used-cash deposit ηu
t : [0.975d̄u

t , 1.025d̄u
t ],

[0.95d̄u
t , 1.05d̄u

t ] and [0.925d̄u
t , 1.075d̄u

t ]. We consider three values of the length, τ , of the

rolling horizon: 2, 5, and 10. Next, we generate 10 instances of the average used-cash de-

posits and fit-cash demands throughout the T -period horizon. Thus, we have 10 vectors

(d̄u
t , d̄

f
t ), t = 1, 2, . . . , T . For each of these instances, we generate three instances of the

demands/deposits intervals, corresponding to the widths of 5%, 10% and 15%. Thus, we

have 30 vectors (κu
t , d̄

u
t , ν

u
t , κf

t , d̄
f
t , ν

f
t ), t = 1, 2, . . . , T . Finally, for each instance of the de-

mands/deposits intervals, we generate 5 realized instances by randomly choosing the actual

demands/deposits within the corresponding intervals, for a total of 30 × 5 = 150 instances

of the T -period realized problem, Pa.

For each instance of Pa, let X̂∗ denote its optimal solution and let X̂ denote the solution
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obtained by Procedure rolling horizon described above. The percentage increase in cost

of X̂ over X̂∗, computed as
(Objective Value of X̂ - Objective Value of X̂∗)

Objective Value of X̂∗ × 100%, is an

appropriate metric to capture the performance of Procedure rolling horizon. Each entry

in Table 3.2 indicates the average of this gap over the corresponding 50 instances of BM

corresponding to each value of w.

Table 3.2. Impact of the Length of the Rolling Horizon (τ) and Variation Width (w) on the
Performance of Procedure rolling horizon.

τ ↓ w → 5% 10% 15%

2 1.00% 2.00% 2.95%
5 0.76% 1.77% 2.75%
10 0.75% 1.77% 2.75%

For RM, we note that CPLEX (version 11.1.1) is not able to solve instances with T = 100

to optimality within a reasonable amount of time (2 hours of CPU time). Therefore, to

compare the solutions obtained by our procedure, we used the best solution available from

CPLEX. Considering the size of our test bed, we imposed a time limit of 20 minutes within

CPLEX for each 100-period instance of RM. In most cases, the best solution available at the

end of the imposed time limit is within 10% of the optimal. We then compare this solution

with the one obtained by Procedure rolling horizon. Again, the average percentage gap

between the two solutions is similar to that shown in Table 3.2.

Given that the optimal solutions to Pa are “ideal” – in the sense that they assume future

data is known with certainty a priori – we observe that Procedure rolling horizon offers

near-optimal, real-time solutions efficiently even in the presence of a considerable amount

of variation (signified by a width of 15%). We conclude that practitioners can effectively

use the two models (BM and RM), together with this procedure to plan the decisions of

transportation, fit-sorting, and custodial inventory.
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Since DIs need to manage cash inventory in the presence of the Fed’s implemented policy,

Problems BM and RM are indeed the real problems that DIs need to address and have,

therefore, been the focus of our analysis. In Dawande et al. (2010), the authors argue

that the Fed’s policy may not induce DIs to behave in a socially-optimal manner. In the

next section, we compare a DI’s inventory decisions under the Fed’s mechanism with those

under a socially-optimal mechanism. From a DI’s individual perspective, a socially-optimal

mechanism may not be necessarily better than the Fed’s mechanism. Thus, in addition to

help us compare – from a DI’s viewpoint – the relative benefits of the two mechanisms, such

an analysis may also help the Fed fine-tune the parameters of its policy in the future.

3.6 The Fed’s Policy and a Socially-Optimal Mechanism: A Comparative Anal-

ysis

The Fed’s mechanism focuses on cross-shipping with the intention of lessening its fit-sorting

expense and, consequently, the societal cost of providing cash to the public. Dawande et

al. (2010) argue that instead of this indirect manner of reducing social cost, the Fed can

directly focus on reducing its fit-sorting volume, which, in turn, is defined by the non-fit-

sorted used cash deposited to the Fed by the DIs. The authors propose a (hypothetical)

socially-optimal mechanism that differs from the Fed’s current policy in two respects: (1)

the calculation of the volume of cross-shipping and (2) a reward for additional fit-sorting. The

definition of cross-shipping is the same under both mechanisms. Under the Fed’s policy, the

volume of cross-shipping is calculated as the lesser of the fit cash in the used-cash deposit and

the fit-cash withdrawal in the same week. In contrast, under the socially-optimal mechanism,
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the volume of cross-shipping is the amount of used-cash deposit, if there is also a fit-cash

withdrawal in the same week. Also, under the socially-optimal mechanism, the DI receives

a reward from the Fed if it deposits extra fit-sorted cash to the Fed after satisfying its own

demand of fit cash.

We let RMs denote the variant (of RM) that minimizes a DI’s total cost incurred in managing

the inventory of cash under the socially-optimal mechanism of Dawande et al (2010). The

formulation of RMs as an MIP is similar to that of RM in Section 3.3.3; we, therefore, avoid

specifying the entire formulation and only summarize the main differences. In addition to

the parameters of RM, the formulation of RMs requires a new parameter w, defined as the

ratio between the reward for depositing one bundle of fit-sorted cash and the fit-sorting cost

(r/ρ) incurred for generating one bundle of fit-sorted cash. Furthermore, objective function

of RMs is to minimize the net cost for a DI, which is the difference between the total costs

incurred (see Section 3.3.1) and the total reward received, over the planning horizon. Except

for the constraints that define the volume of cross-shipping and the reward, all the other

constraints in RMs are the same as in RM. As in the case with RM, CPLEX was able to

optimally solve the MIPs corresponding to the instances of RMs in a reasonable time.

To illustrate the differences between the Fed’s policy and the socially-optimal mechanism, we

define the Relative Benefit of Social Plan (RBoSP) as the percentage cost saving offered

by RMs over RM. RBoSP captures the relative monetary impact on a DI from operating

under the socially-optimal mechanism instead of the Fed’s current policy. That is,

RBoSP =
(Objective Value of RM - Objective Value of RMs)× 100%

Objective Value of RM
.
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To understand the behavior of the RBoSP, it is instructive to examine the two mechanisms

under two extreme scenarios: one in which both the ratio w and the imbalance ratio α are

high and the other in which both these ratios are (relatively) low. To generate an appropriate

test bed, we fix the length of the horizon (T ) at 10. Also, the per bundle cross-shipping fee

(e) and the per bundle per period holding cost (h) are fixed at $5 and $6, respectively. The

per bundle fit-sorting cost (r) takes one of four values: 2, 4, 6, 8. Except for w and α, we

keep the remaining parameters at their baseline values described in Section 3.4.1. Different

combinations of the pair (w, α) are considered in the two scenarios. For each value of α, by

using the approach described in Section 3.4.1, we generate 10 vectors of fit-cash demands and

used-cash deposits over the horizon. Thus, for each value of α, we have 10 instances each of

RM and RMs. Figure 3.4(a) corresponds to the scenario when w = 2 and α ∈ {2.0, 2.1, 2.2}

while Figure 3.4(b) represents the scenario when w = 1 and α ∈ {0.8, 0.9, 1.0}. Each point

in Figure 3.4 represents the average value of RBoSP over the 10 instances that correspond

to a specific choice of α and r.
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Figure 3.4. The Relative Benefit of Social Plan under Two Scenarios.

As seen in Figure 3.4(a), the RBoSP is non-negative and increases with the fit-sorting cost

(r). Thus, in the first scenario, the DI incurs a lower cost under the socially-optimal policy as
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compared to that under the Fed’s policy, and the gap between these two costs increases with

the fit-sorting cost. This behavior can be explained using two properties: availability of used

cash to fit-sort an additional amount and the reward for undertaking additional fit-sorting.

Since the imbalance ratio α ≥ 2, the DI has the opportunity to fit-sort more, after satisfying

its own demand of fit-cash. Also, since w = 2, fit-sorting extra used-cash is profitable for

the DI. Consequently, relative to the Fed’s mechanism, the DI fit-sorts more and cross-ships

less under the socially-optimal mechanism, which, in turn, implies that it earns more reward

and pays less penalty. Recall that w is the ratio of the reward for depositing one bundle

of fit-sorted cash to the fit-sorting cost r/ρ incurred for generating one bundle of fit-sorted

cash. Since w is fixed, the per-bundle reward increases with r. Thus, the relative benefit of

operating under the socially-optimal mechanism progressively increases with r, reflecting in

an increase in RBoSP.

In contrast, the second scenario results in Figure 3.4(b), where the RBoSP is non-positive

and further decreases with r. Thus, the DI is worse off under the socially-optimal mechanism.

We discuss the reward first. Since α ≤ 1, the DI cannot satisfy all of its fit-cash demand

by fit-sorting its used-cash deposit. Also, w = 1 implies that the reward from depositing

fit-sorted cash to the Fed is only enough to cover the fit-sorting expense incurred to generate

it. Thus, the DI cannot derive significant benefit from the reward component of the socially-

optimal mechanism. Next, we examine the difference in the cross-shipping penalty between

the two mechanisms. When r is low, under both the mechanisms, the DI chooses to fit-sort

most of the used-cash to avoid cross-shipping. In turn, the absence of any cross-shipping

implies that there is no or little difference between the objective values of RM and RMs.
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When r increases, the DI prefers to fit-sort less in RM. Consequently, the DI has more

used-cash inventory and needs to withdraw more fit-cash from the Fed. Thus, in general,

the volume of cross-shipping increases. Note, however, that for the same solution, the DI is

charged more cross-shipping penalty under the socially-optimal mechanism than under the

Fed’s policy. Thus, when r increases, the objective value of RMs increases faster than that

of RM; consequently, RBoSP decreases with r.

To summarize, the DI can be either better or worse off under the socially-optimal mechanism

than under the Fed’s policy. There are two main determinants of the sign of RBoSP: the

imbalance ratio (α) and the reward ratio (w). In general, under the socially-optimal mecha-

nism, when α and w are both large, the DI benefits from the reward component and is able

to reduce its net cost to a value lower than that under the Fed’s mechanism. When α and

w are both small, the DI incurs a heavier penalty as compared to the Fed’s mechanism and,

thus, incurs a relatively higher net cost. In both cases, the percentage gap between the two

mechanisms enlarges with an increase in r.

3.7 Conclusions

The Federal Reserve’s 2007 recirculation policy for physical cash is designed to incentivize

DIs to locally reuse cash by fit-sorting their used-cash deposits. In this paper, we address

the management of the inventories of different types of cash – used, fit, and unfit – over a

finite planning horizon for a medium-size DI. The Fed’s policy poses an important choice for

a DI: whether or not to undertake the fit-sorting activity. Our first model (BM) captures

the scenario in which a DI chooses not to fit-sort used cash. We identify two characteristics
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of an optimal solution regarding the withdrawals of fit cash and deposits of used cash. By

exploiting these structural properties, we develop a polynomial-time dynamic programming

algorithm. Our second model (RM) captures the situation when a DI undertakes fit-sorting

(and is therefore also able to exploit custodial inventory, which is another component of the

Fed’s policy). We establish the hardness of this model and develop an integer programming

formulation. Through a comprehensive numerical study, we conclude that the saving for a DI

from implementing fit-sorting and custodial inventory as well as the extent of local recircu-

lation are substantial. Thus, the Fed’s eventual goal of reducing the social cost of providing

currency to the public can be furthered. Moreover, the saving reaches its highest value when

the imbalance between the used-cash deposit and fit-cash demand is just enough to effectively

satisfy all demand via local reuse. To adapt our models for real-time decisions, we develop

a rolling-horizon procedure which operates in an iterative decision-making environment. We

show that our procedure provides near-optimal, real-time solutions to arbitrary realized in-

stances when the widths of the interval forecasts over the planning horizon are modest. We

also show that a DI can be either better or worse off under the Fed’s implemented policy as

compared to a (hypothetical) socially-optimal mechanism.

Limitations and Directions for Future Work

The two models – BM and RM – studied in this paper assume that data is known with

certainty. While this simplifying assumption seems to be reasonable based on our interactions

with practitioners, uncertainty may arise from three sources: demand of fit cash, deposit of

used cash, and the proportion of fit cash in used-cash deposit. The rolling-horizon procedure

in Section 3.5 performs well under the assumption that the widths of the interval forecasts
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over the planning horizon are modest. This can be seen as an effort to address – to a limited

extent – the uncertainty from the first two sources. Nevertheless, the applicability of our

models would benefit from a stochastic analysis in the presence of these uncertainties.

If cross-shipping cost is ignored, then the stochastic model corresponding to BM is equivalent

to the problem of managing the inventories of two products experiencing stochastic demand

and having a joint set-up cost. A limited set of results for this problem are available in the

literature; see, e.g., Johnson (1967), Wheeler (1968), Kalin (1980), Liu and Esogbue (1999),

Gallego and Sethi (2005). However, a characterization of the optimal policy under a general

setting has, thus far, remained elusive. A promising but challenging future direction is to

completely characterize the optimal policy for this problem. The main challenge here is that

there is a fixed cost shared by two products. Thus, this direction is likely to warrant an

advancement in the theory of multidimensional K-convexity. When cross-shipping cost is

considered, the stochastic problems corresponding to both BM and RM involve complicated

interactions between fit-cash withdrawals, used-cash deposits, and unfit-cash deposits. To

our knowledge, such models have not been addressed in the literature. While it is unlikely

that simple optimal policies exist for these problems, the task of obtaining near-optimal

policies which can be efficiently implemented is a challenging and useful direction for future

work.

It is instructive to establish a broader connection for the setting of our analysis in this

paper. Conceptually, the need for local reuse in the cash supply chain is similar to that in

the supply chain of false-failure returns (see, e.g., Ferguson et al. 2006). False-failure returns

refer to those goods that are returned to the retailer (by customers) and, subsequently, to the
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manufacturer (by the retailer) but have no functional or cosmetic defects. Like used cash, a

significant fraction of which is actually reusable, the manufacturer may find it economical to

incentivize retailers to locally identify and recirculate faulty returns. In turn, the retailer may

hire the services of a third-party provider to accomplish this task. Such a setting provides

an opportunity to expand the analysis to a genuine multi-product domain.
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PROCESS INNOVATION VIA AN INDUSTRIAL SYMBIOTIC SYSTEM: THE IMPACT

OF COMPETITION ON THE WILLINGNESS TO IMPLEMENT

4.1 Synopsis

The principle of industrial ecology (Allenby, 1992; Jellinski et al., 1992; Ehrenfeld, 1995)

proposes to reorganize the industrial system so that it evolves towards a mode of operation

that is compatible with the biosphere and is sustainable over the long term. Industrial

ecology suggests the idea of an industrial food chain in which companies can be linked in

some form of network, in order to exploit unutilized resources or by-products and thereby

increase resource utilization. The two main elements under this concept are (1) the need to

optimize the use of materials and energy, and (2) to close material loops while minimizing

emissions.

Industrial Symbiosis, a subfield of industrial ecology, can be defined as engaging “tradition-

ally separate industries in a collective approach to competitive advantage involving physical

exchange of material, energy, water, and by-products” (Chertow, 2000). The term By-

Product Synergy (BPS) has also been used synonymously in the literature with industrial

symbiosis. BPS can offer true business opportunities beyond cost reduction, if wastes are

viewed as raw materials for other industries. As BPS networks develop, industry goals may

shift from reducing waste generation towards producing near-zero waste and finally to pro-

ducing 100% product, while emissions are lowered and energy use is minimized (Mangan and

112



www.manaraa.com

113

Olivetti 2010). The economic activity created in a BPS network creates new businesses and

jobs, where the premise is that turning waste output from one organization into a product

stream for another organization can generate revenue while reducing emissions and the need

for virgin materials.

To focus on the operational issues involved in the implementation of an industrial symbiotic

system, it is beneficial to first discuss a specific example.

4.1.1 A Real-World Implementation of a Symbiotic System

Seshasayee Paper and Boards (SPB; http://www.spbltd.com) was set up as a public enter-

prise in 1961 in the southern state of Tamil Nadu, India (see Private Communications listed

at the end of the chapter). The company’s main products include Bristol boards, Manila

boards, colored bank paper, colored poster paper, and writing paper. The paper industry

is capital intensive and highly dependent on easy access to high-quality raw materials. In

particular, the paper industry in India has traditionally faced considerable difficulty with

the availability of raw materials. The continued efforts by the Government of India to min-

imize de-forestation have progressively increased the scarcity of wood. Consequently, paper

manufacturers have been consistently forced to look for alternate sources of raw materials.

One such alternative for the paper production process is bagasse, a fibrous mass remaining

after the extraction process of juice from sugarcane. The use of bagasse in paper produc-

tion is energy efficient and also has a lesser impact on the environment, relative to wood.

Traditionally, bagasse has been used as an important fuel input in the sugar industry and

can meet the requirement of fuel for the industry. Since alternative fuels such as coal or
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furnace oil are relatively costlier, the sugar industry has been reluctant to sell the bagasse

to the paper industry. Not surprisingly, following the steep increase in the prices of furnace

oil and coal over the years, SPB was unable to make any arrangement to obtain a regular

supply of bagasse from the sugar industry. The company also faces several environmental

challenges. In addition to the emission of non-condensable gases, a paper mill also releases

chlorinated compounds, dioxins, and furans. The waste water (effluent) carries high levels

of Biochemical Oxygen Demand, Chemical Oxygen Demand, and other suspended solids.

Furthermore, the problem of solid waste disposal is also a major concern in the face of local

environmental pressures.

Sugarcane Sugarcane Sugarcane Sugarcane 

FieldFieldFieldField

Sugarcane

Sugar MillSugar MillSugar MillSugar Mill

Paper MillPaper MillPaper MillPaper Mill

A Symbiotic TriangleA Symbiotic TriangleA Symbiotic TriangleA Symbiotic Triangle

SPB supplies its 

treated water free to 

the local farmers for 

the cultivation of 

sugarcane.

The farmers sell 

the sugarcane 

they produce to 

Ponni Sugars

Ponni Sugars uses 

the sugarcane to 

produce sugar and 

supplies all of its 

bagasse to SPB.

Figure 4.1. A Pictorial Illustration of the Paper-Sugar Symbiotic Industrial Complex.
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SPB responded to these challenges by creating a revolutionary industrial complex. The

company got involved in sugar production by locating a sugar mill (Ponni Sugars) close to

its paper production facility, so that the entire output of bagasse from the production of sugar

can be used as an input for the production of paper. This, however, led to another hurdle –

availability of sugarcane that is a key ingredient for sugar production. This was a difficult

problem as there was very little cultivation of sugarcane in the immediate neighborhood

due to poor availability of water. The land around the nearby river Cauvery was elevated

and dry, and there was a lack of facilities to pump water from the river (20 feet lower) to

the surrounding areas. In 1991, the company entered into a tripartite agreement with the

local farmers and its sugar mill, and decided to irrigate about 1500 acres of dry land with

SPB’s treated effluent for the cultivation of sugarcane. The sugar mill, in turn, purchases

the sugarcane from these farmers and supplies its by-product bagasse to the paper mill of

SPB. This “symbiotic triangle” is illustrated in Figure 4.1.

4.1.2 Differences from Traditional Process Innovation

There are several features of this implementation of the paper-sugar industrial complex that

distinguish it from a traditional process innovation. We discuss a few below. Later, in

Sections 4.2 and 4.3, our models exploit these properties.

1. Simultaneous Change in the Production Processes of Multiple Products: It is important

to note the fundamental, and more environment-friendly, change in the use of bagasse

in the symbiotic system. While bagasse has been used by sugar mills as a source of fuel,

its use in paper production (in the symbiotic system) is as a core raw material. This
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affects the production processes of both sugar and paper. On the one hand, the sugar

mill needs to source alternate fuel since bagasse is no longer available. On the other

hand, the production process of paper needs to be appropriately altered to use bagasse

instead of wood. Also, in the larger symbiotic system, there are other implications:

(1) sugar production benefits from the use of reliable and relatively cheap supply of

sugarcane from the local farmers, (2) the effluent from paper production needs to be

treated and delivered to the farmers, which is an additional expense for the paper mill,

and (3) after implementation, the need to treat the waste from the productions of both

paper and sugar reduces significantly relative to that before implementation. Clearly,

these changes together imply advantages as well as disadvantages for both production

processes.

2. A Common Fixed Cost: Since the process changes are symbiotic, the fixed investments

required for the implementation naturally constitute one common cost for the entire

implementation. This common fixed cost includes (i) acquiring the capability for the

large-scale processing of bagasse in paper production, (ii) acquiring the capability to

appropriately treat the effluent from the production processes, so that it can be used by

sugarcane farmers, and (iii) building the transportation infrastructure for distributing

the treated effluent to the sugarcane farmers.

3. Linked Production Costs and Production Quantities: Using the output (bagasse) of

the sugar mill as raw material reduces the procurement cost of paper production.

Therefore, the production quantities and marginal costs of the two products get inter-

connected. While the production quantities of paper and sugar do not necessarily
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depend on each other (since, if required, the paper mill can obtain wood and the sugar

mill can get additional sugarcane from other sources), their reciprocal influences on

the cost economies in the symbiotic system are clear.

Finally, it should be emphasized that implementing the symbiotic system is a decision that

implies accepting the (different) impacts on both the products together. In other words, it

is not possible to change the production process of only one product while leaving the other

unaffected. It is also clear from the discussion above that the cost-benefit tradeoff for the

symbiotic system as a whole is not straightforward.

There are several other implementations of symbiotic systems that have been reported in

the literature. We briefly mention three examples.

• Londonderry Eco-Industrial Park, New Hampshire (Block, 1998): The 100-acre park

near the New Hampshire airport is one of the nation’s prime examples of eco-industrial

synergies. A plastics recycling company (a tenant at the park) purchases waste plas-

tic from Stonyfield Farms Yogurt (a firm that is located close to the park). AES

Corporation (Puerto Rico) commissioned and built a 720 MW combined natural gas

power plant on site that uses treated waste water, which is pumped from the city of

Manchester’s sewage treatment facility, in its cooling towers.

• Industrial Symbiosis Park, Kalundborg, Denmark (Ehrenfeld and Gertler 1997): The

park consists of a web of material and energy exchanges that occur amongst several

diverse companies and the local community. There are five core partners – a power

station, an oil refinery, a gypsum board facility, a pharmaceutical plant, and the city
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of Kalundborg – who have all developed a series of bilateral exchanges. The partners

share ground water, surface water, waste water, steam, electricity, and also exchange

a variety of residues that become feedstock for other processes.

• Monfort Boys Town Integrated BioSystem, Suva, Fiji (Klee and Williams, 1999; Be-

quette, 1997; Kane, 1997; Klee, 1999): This symbiotic system mixes agriculture and

industry. Here, the waste from a brewery (spent grain) is used as a substrate to grow

mushrooms, which are sold in the marketplace. The mushrooms break down the waste,

making it a high-value, edible pig feed. The pigs are sold in the market, and the waste

generated from the pigs is processed through an anaerobic digester. The treated waste

is then piped to local fishponds, where the nutrient-rich water spawns food for several

tropical layers of fish. The waste also creates fertile soil for growing vegetables.

4.1.3 Our Goals and Contributions

Our discussion thus far raises a variety of important research issues concerning symbiotic

systems. This paper focuses on the following:

• Characterization of the Impact of a Symbiotic System: The differences with

traditional process innovation (Section 4.1.2) imply non-trivial cost-side (operational)

tradeoffs of implementing a symbiotic system. The implementation provides a firm

an option of offering “green” (i.e., environment-friendly) variants of its products. Ac-

cordingly, the demand-side impact (to be soon discussed in Section 4.2.3) depends on

the nature of the consumer population. Two other factors affecting the demand-side

influence are the presence of a competing firm and the nature of the products offered
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by the competition. Motivated by the real-world system discussed in Section 4.1.1,

we analyze a firm’s production decisions for its two products – both in the presence

and absence of a symbiotic system – under monopoly as well as under competition in

Section 4.3.

• Understanding the “Willingness” to Implement a Symbiotic System: For

a given setting (supply- and demand-side parameters; nature of competition, if any),

the difference in a firm’s total profits (from all the products connected by a symbi-

otic system) before and after the implementation of the system is a good measure to

capture its willingness to implement the system. Section 4.4 exploits the correspond-

ing optimal/equlibrium solutions to examine the behavior of this metric both under

monopoly and competition, with respect to changes in several important parameters,

including the variable production cost after implementation, consumers’ appreciation

of the green variant, and the proportion of green consumers.

• Increased Willingness under Competition: SPB’s decision to implement the sym-

biotic system (Section 4.1.1) in 1991 came at an interesting time. Around the same

time, the Government of India initiated the process of economic liberalization, which

opened the country’s markets to foreign firms in several sectors, including paper and

pulp. This coincidence raises two interesting questions:

1. Can the presence of competition increase the firm’s willingness (relative to that

under a monopoly) to implement the symbiotic system? We address this issue

in Section 4.4.3 and identify some situations under which the answer is in the

affirmative.
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2. The firm can face competition either for its regular variant only or for both the

regular and green variants. Can the willingness in the former situation be higher

than that in the latter? Some conditions for an affirmative answer are identified

in Section 4.4.3.

• Benefiting Both the Firm and the Consumers:

While the benefits of a symbiotic system for the society at large are clear, a stronger

motivation for the firm to implement the system results when both the firm and its

consumers benefit. In Section 4.4.4, we identify some conditions under which such a

simultaneous improvement occurs. We also illustrate a stronger case where a firm’s

willingness to implement is negative in a monopoly, but positive under competition

and consumer welfare too increases after the implementation.

Technically, the challenges in our analysis are twofold: Under monopoly, we derive a firm’s

optimal prices of two variants (regular and green) in the presence of three types of consumers

(regular, flexible green, and dedicated green) who each have different valuations for these two

variants. It is important to emphasize that although the flexible green consumers have higher

valuation for the green variant, they may choose to purchase the regular variant in case the

price of the green variant is too high relative to that of the regular variant. Under Cournot

competition, we derive the equilibrium production quantities – and the corresponding prices

– of two firms for both the variants, under various settings of the nature of competition

(competitors offering only the regular variants vs. both variants).
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4.1.4 Literature Review

Three broad streams of literature are relevant to our paper – Closed-Loop Supply Chain

Management, Industrial Ecology and Symbiotic Systems, and Process Innovation.

• Closed-Loop Supply Chain Management: The primary focus of the closed-loop

supply chain literature has been on taking back products from consumers and recover-

ing added value by using all or part of the products. Here, product recovery is addressed

at the end of products’ use or end of life with an emphasis on preventing them from

entering the waste stream by using materials recovery systems and then adding value.

Fleischmann et al. (1997), Guide et al. (2000), Guide and Jayaraman (2001) and Guide

et al. (2003), all offer comprehensive reviews of reverse logistics and closed-loop supply

chain research, including remanufacturing, recycling, reselling, and disposal. Most of

these studies address a combination of cost-efficient recovery processes, while meet-

ing prescribed environmental standards. Researchers including Toktay et al. (2000),

Savaskan et al. (2004), Ferrer and Swaminathan (2006), and Geyer et al. (2007), study

the implications of remanufacturing on supply chain logistics, operations, and product

design, while Majumder and Groenevelt (2001) and Ferguson and Toktay (2006) study

remanufacturing in a competitive setting.

Recently, researchers have focused on the management of waste streams and the im-

pact of regulation on both product and waste dispositions. For example, Subramanian

et al. (2008) study the impact of extended producer responsibility for new product

introductions in the electronics industry, while Plambeck and Wang (2009) investigate
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product design of durable goods in a sustainable supply chain environment. Addition-

ally, Atasu et al. (2009), Esenduran and Kermahlioglu-Ziya (2009) and Esenduran et

al. (2009) all study the operational impact of product take-back legislation. Guide

and Van Wassenhove (2009) recount the evolution of research in the closed-loop sup-

ply chain area and discuss its development as a recognized subfield in supply chain

operations.

The existing work on closed-loop supply chains primarily addresses post-consumer

waste, where the source of the waste is the consumer. In contrast, our paper consid-

ers the simultaneous utilization of pre-consumer wastes from multiple products. We

examine a setting where the waste from the manufacture of one product is used as a

raw material for a second product, and vice-versa. In our setting, the firm proactively

modifies its production processes to accomplish this goal.

• Environmental Issues, Industrial Ecology, and Symbiotic Systems: Envi-

ronmental issues form an integral part of the broad framework of sustainability. As

managers become increasingly aware of the long-term business implications of sustain-

ability, organizations have moved beyond the consideration of whether or not it pays

to be green (King and Lennox 2002; Walley and Whitehead 1994). The focus has now

shifted on how to address environmental challenges, while maintaining competitiveness

(Kleindorfer et al. 2005; Corbett and Klassen 2006). Studies that aim at integrating

sustainability into environmental and economic systems include Allenby (1992), Jelin-

ski et al. (1992), Allen and Behmanish (1994), Ehrenfeld and Gertler (1997), Korho-

nen (2004), and Wang et al. (2010). Researchers including Daly (1991) and Ehrenfeld
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(1995) suggest simple design principles, including closing material loops, dematerial-

ization, toxic elimination, and pollution prevention, that can serve as emerging models

for operationalizing industrial ecology. Ehrenfeld and Gertler (1997) highlight indus-

trial symbiosis via the Kalundborg case in Denmark, while Schwarz and Steininger

(1997) and Posch et al. (1998) discuss the industrial recycling network at Styria. In

both these cases, the key drivers are the potential cost reduction that is accomplished

from waste avoidance and savings in virgin raw material. Lee (2011) studies a firm’s

operating strategies when it implements a by-product synergy on two products that

are generated by a single production process.

In this paper, our attempt has been to characterize both the cost-side and demand-side

implications of implementing an industrial symbiotic system. In particular, we show

that these considerations generate rich tradeoffs and provide valuable insights on the

decision to implement the environment-friendly initiative.

• Process Innovation: One consequence of a symbiotic system is the potential re-

duction in the production cost of one or more products that are manufactured in the

system. In this sense, our work is related to the literature on “cost-reducing process

innovations.” Arrow (1962) considers the case of a firm undertaking a cost-reducing

investment that cannot be imitated by competitors. He shows that the gain from a

cost-reducing innovation is higher for a firm in a perfectly competitive industry than

that for a monopolist. Bonanno and Haworth (1998) consider a vertically-differentiated

industry to examine the question of whether cost-reducing innovations are more likely

to be observed in regimes of more intense or less intense competition. Rosenkranz
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(2003) studies the optimal division between product and process innovation under

competition, when firms have an incentive to invest R&D activities in both. Martinez-

Ros and Labeaga (2009) conclude that firms with a capability to engage in process

innovation can be expected to generate higher profits, relative to those possible for

non-innovators. Skea (1995) describes a range of process innovation strategies that or-

ganizations can adopt – from installing an end-of-pipeline technology (such as building

a water treatment facility) to waste and emission-reduction strategies (such as process

improvements through supply-chain redesign).

In our paper, a symbiotic system can be regarded as an unconventional approach for

achieving by-product synergy, where multiple, simultaneous process innovations are

implemented on the products linked by the system. Our analysis exploits this funda-

mental difference from traditional process innovation to offer insights on an organiza-

tion’s willingness to implement the system.

We now proceed to describe the setting of our analysis.

4.2 Model Setting

To address the research issues raised in Section 4.1.3, we develop several models to capture

the operations of a domestic firm (Firm 1) that produces two products, P and S, under various

settings. These models represent the scenarios both before and after the implementation of

an industrial symbiotic system, and will be described in detail in Section 4.3. As justified later

in Section 4.2.3, under an assumption that typically holds in practice, the firm’s operational
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decisions for the two products can be made separately. Thus, for the purpose of analyzing the

firm’s optimal decisions (under monopoly) and equilibrium decisions (under competition), a

single-product model suffices here. Subsequently, in Section 4.4, when evaluating the firm’s

strategic decision of whether or not to implement the symbiotic system, we consider the

combined impact on the two products.

This section is organized as follows: in Section 4.2.1, we introduce the products and con-

sumers studied in our models. Next, the structure of demand is described in Section 4.2.2.

The cost-side and demand-side impacts of implementing the symbiotic system are formalized

in Section 4.2.3.

4.2.1 Types of Product Variants and Consumers

There are two possible variants of the product: regular and green. If a firm does not im-

plement the symbiotic system, its products can only be labeled as regular. Otherwise, if

the system is implemented, then the firm has the option of labeling its products as green,

which represents the use of an environment-friendly production process. Note that, in the

latter case, the firm could still label its products as regular. We now introduce the primary

notation used in our analysis. Additional notation is introduced later, as required.

Several surveys (e.g., Irland 1993, Forsyth et al. 1999) have indicated the existence of a

significant proportion of environment-conscious consumers who are willing to pay a premium

for variants produced by an ecologically friendly process. Wustenhagen et al. (2003) cite the

example of Swiss utility companies that are able to offer “green” electricity by charging
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Notation:

α The upper bound of consumer’s valuation of one unit of the regular variant.
a The appreciation of the green variant, defined by the ratio of a green consumer’s

valuation for a unit of the green variant to that for a unit of the regular variant,
a ≥ 1.

pr The market price of the regular variant.
pg The market price of the green variant.
vr The consumer’s valuation of the regular variant.
vg The consumer’s valuation of the green variant.
Qr The total demand of the regular variant.
Qg The total demand of the green variant.

their customers premiums of about 400-700% over the regular product. Sedjo and Swallow

(2002) model the premium for a green variant as a percentage over customers’ valuation

of the regular variant. We consider three types of consumers: regular, flexible green and

dedicated green. On the one extreme, we have regular consumers who do not have any

special appreciation for the “green” label. Accordingly, the valuation of these consumers for

the green variant is the same as that for the regular variant. On the other extreme, dedicated

green consumers are devoted to the green variant, if it is available. Thus, the valuation of

dedicated green consumers for the regular variant becomes 0 if the green variant is available.

In general, these consumers have a relatively higher valuation for the green variant. Flexible

green consumers represent the intermediate kind: they simply have a higher valuation for

the green variant, relative to the regular variant. These consumers buy the regular variant,

if it results in a higher utility. The precise valuations of these three types of consumers are

defined in Table 4.1.

We assume that an individual consumer’s valuation for a unit of regular variant is uniformly

distributed between 0 and an upper bound α, with density 11. At any point v, 0 ≤ v ≤
1Note that there is no technical difficulty in assuming the density to be an arbitrary positive
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Table 4.1. Valuations of the Three Types of Consumers for Regular and Green Variants, for
an Arbitrary Value of v, 0 ≤ v ≤ α.

Consumer’s Type ↓ Valuation → Regular Variant, Green Variant (vr, vg)

Regular (v, v)
Flexible Green (v, av)

Dedicated Green
(v, –), if the green variant is unavailable
(0, av), if the green variant is available

α, there stands one customer. With probability θ1 (resp., θ2 and θ3), the consumer is a

regular consumer (resp., a flexible green consumer and a dedicated green consumer). The

distribution of consumers’ valuation is shown in Figure 4.2.

Consumers’ Valuation for the Regular Variant (v)

0 α

Regular Consumers

Flexible Green Consumers

Dedicated Green Consumers

1θ

3θ

2θ

1

Figure 4.2. Distribution of Consumers’ Valuation for the Regular Variant.

4.2.2 Structure of Demand

To obtain the aggregate demands of the regular variant and the green variant, we need to

derive the demand of each type (regular/green) of variant from each type (regular/flexible

green/dedicated green) of consumer. We now discuss these demands under three scenarios.

number, say n, other than 1. In this case, however, the value of n plays a role in the calculation of
the firm’s profit.
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1. Only the regular variant is available.

All the consumers who have a valuation higher than or equal to the market price will

purchase the variant. Thus, we have

Qr = α− pr.

2. Both regular and green variants are available.

There are four possible price settings: 0 < pg ≤ pr, pr ≤ pg ≤ apr, apr ≤ pg ≤

(a − 1)α + pr, and (a − 1)α + pr ≤ pg ≤ aα. The choices of each type of consumer

and the total market demand for each variant under these four price settings are

summarized in the following table. For brevity, we avoid providing the derivations of

the expressions in the table.

Table 4.2. The Market Demand when Both Regular and Green Variants are Available.

→ Price Setting 0 < pg ≤ pr
pr ≤ pg apr ≤ pg ≤ (a− 1)α + pr

↓ Demand ≤ apr (a− 1)α + pr ≤ pg ≤ aα

Type(s) of Regular Consumers Green Regular Regular Regular
Variants Flexible Green Green Green Green and RegularChosen Consumers Regular

By Dedicated Green Green Green Green GreenConsumers Consumers

Aggregate Total Demand of the 0 (α− pr)θ1
(α− pr)θ1+ (α− pr)

Regular Variant (Qr)
pg−apr

a−1 θ2 (θ1 + θ2)

Demand Total Demand of the (α− pg)θ1+ (α− pg

a ) (α− pg

a )θ3+ (α− pg

a )θ3Green Variant (Qg) (α− pg

a )(1− θ1) (1− θ1) (α− pg−pr

a−1 )θ2

3. Only the green variant is available.

In this case, all the three types of consumers either buy the green variant or buy

nothing. Thus,

Qg = (α− pg)θ1 + (α− pg

a
)(1− θ1).
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4.2.3 Cost-Side and Demand-Side Impacts of Implementing a Symbiotic System

Like traditional process innovation, the implementation of the symbiotic system affects a

firm’s production cost. Furthermore, it is clear from the discussion above that implementing

the system also influences the market demand of a firm’s variants. To describe these two

impacts, we need some additional notation. For brevity, we only define the notation for

Product P. The corresponding notation for Product S will then be clear.

Notation:

π1 The profit of Firm 1 before the implementation of the symbiotic system.
π
′
1 The profit of Firm 1 after the implementation of the symbiotic system.

K The fixed cost of implementing the symbiotic system.
pp The market price of Product P.
q1,p Firm 1’s production quantity of Product P.
b1q

2
1,p The waste treatment cost before the implementation of the symbiotic system.

C1,p(q1,p) The total production cost of Firm 1 to produce q1,p units of Product P prior
to the implementation of the symbiotic system: C1,p(q1,p) = b1q

2
1,p + c1,pq1,p,

where b1 and c1,p are positive constants, b1 ¿ c1,p.
b
′
1q1,p The waste treatment cost after the implementation of the symbiotic system.

C
′
1,p(q1,p) The total production cost of Firm 1 to produce q1,p units of Product P after

the implementation of the symbiotic system: C
′
1,p(q1,p) = c

′
1,pq1,p, where c

′
1,p is

a positive constant whose value will be defined later.
βp The amount of waste generated from the production of one unit of Product P.
γp The amount of waste of Product P needed to produce one unit of Product S.
sp The cost saving for using one unit of the waste of Product P to produce

Product S.
s̄p The revenue from selling one unit of the additional waste of Product P in the

open market.

• The Cost-Side Impact

Before the implementation of a symbiotic system, Firm 1’s total profit is:

π1 = ppq1,p − b1q
2
1,p − c1,pq1,p + psq1,s − b1q

2
1,s − c1,sq1,s.

The implementation of a symbiotic system affects the cost of production in three ways:
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1. The additional fixed cost of implementing the symbiotic system

The firm incurs an additional fixed cost K.

2. The savings in waste treatment cost

We assume that the implementation simplifies the treatment process of the wastes of

both the products, by reducing the need to extensively treat them. Thus, the waste

treatment cost – which is represented by the quadratic term (b1q
2
1,p) in the original

production cost function – now has a linear form (b
′
1q1,p).

3. The savings in procurement cost of raw material

We assume that βp units of waste are generated from the production of one unit of

Product P. One unit of Product S can be produced by using γp units of this waste.

The firm saves an amount of sp for using every unit of the waste of Product P to

produce Product S. Thus, the firm saves (sp min{βpq1,p, γpq1,s}) from using the waste

of Product P to produce Product S. If any waste of Product P remains after satisfying

the required production of Product S, then we assume that the firm can sell it in the

open market at a per-unit price s̄p; refer to Figure 4.3.

Then, Firm 1’s total profit after the implementation of the system is:

π
′
1 = ppq1,p − b

′
1q1,p − c1,pq1,p + sp min{βpq1,p, γpq1,s}+ s̄p[βpq1,p − γpq1,s]

+

+psq1,s − b
′
1q1,s − c1,sq1,s + ss min{βsq1,s, γsq1,p}+ s̄s[βsq1,s − γsq1,p]

+ −K.

Our analysis in this paper assumes that the difference between (i) the cost saving

achieved by using one unit of the waste of Product P (resp., S) to produce Product S
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Production of 

Product P

Waste of 

Product S

Product S

Raw Material 

of Product S 

Purchased 

from the 

Supplier 

Waste of 

Product P

Product P

Production of 

Product S

Raw Material 

of Product P 

Purchased 

from the 

Supplier 

[q1,p]

[q1,s]

[βpq1,p]

[βsq1,s]

[βpq1,p - γpq1,s ]+

Open Market

min{βpq1,p , γpq1,s }

Open Market
[βsq1,s -γsq1,p]+

min{βsq1,s ,γsq1,p}

Figure 4.3. The Mutually Beneficial Use of Waste in a Symbiotic System. The Figure
Shows the Production Cycle of Products P and S. The Notation is as Defined at the Start
of Section 4.2.3.

(resp., P) and (ii) the revenue from selling one unit of the additional waste of Product P

(resp., S), is negligible. We offer two arguments to justify this assumption in our con-

text. First, in practical implementations, it is often the case that the waste generated

from one product does not contribute a dominant supply of raw material required for

the production of the other product. For instance, our extensive discussions with the

senior administrators and operations managers at SPB (see Private Communications

listed at the end of the paper) revealed that while a substantial amount of bagasse

needed for paper comes from the sugar mill, it is far from sufficient to meet demand.

Therefore, the company sources additional bagasse and wood from both domestic and

international sources. Thus, all the waste of one product is used in the production

of the other product, and vice-versa. Consequently, there is no additional waste of

these products to be sold in the open market. This is a natural outcome in an “ideal”
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symbiotic system, since the useful utilization of all wastes is a cornerstone of the con-

cept. So, in this case, we do not need the assumption. Second, even if additional waste

remains, its quantity is typically small enough. Thus, there is sufficient demand in the

open market for the firm to realize a per-unit revenue similar to the savings achieved

if the waste were to be used for its own production. Under this assumption, Firm 1’s

total profit after implementation can be rewritten as follows:

π
′
1 = ppq1,p − b

′
1q1,p − c1,pq1,p + spβpq1,p + psq1,s − b

′
1q1,s − c1,sq1,s + ssβsq1,s −K.

Denote c
′
1,p = b

′
1 + c1,p − spβp, c

′
1,s = b

′
1 + c1,s − ssβs. Then, we have

π
′
1 = ppq1,p − c

′
1,pq1,p + psq1,s − c

′
1,sq1,s −K.

Note that depending on the value of b
′
1 − spβp, the coefficient c

′
1,p of the production

cost after the implementation could be either higher or lower than c1,p.

• The Demand-Side Impact

Prior to the implementation of the symbiotic system, the firm can only label Products P

and S as regular. Implementation of the system enables the firm to introduce the “green”

(environment-friendly) variants of the two products, in an attempt to capture the consumers

who have a relatively higher valuation for these variants and take advantage of their higher

willingness to pay. We emphasize that, if the firm so chooses, it can also label a green variant

as regular. One of the key characteristics of the symbiotic system is that both Products P

and S can be labeled as green simultaneously. This symbolizes the “mutually dependant”

relationship of the two products. The reactions of the three types of consumers (regular,
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flexible green, and dedicated green) to these two variants (see Section 4.2.2) then constitute

the demand-side impact of the implementation.

In the next section, we analyze a firm’s production decisions for the two products – both

in the presence and absence of a symbiotic system – under monopoly as well as under

competition.

4.3 Analyzing the Impact of the Symbiotic System under Monopoly and Com-

petition

Section 4.3.1 considers the scenario in which the firm is the only supplier of both Products P

and S in their respective markets. The justification of our chosen setting for analyzing

competition and some related assumptions is provided in Section 4.3.2. Our discussion in

Section 4.3.3 assumes that all green consumers are flexible. The case in which all green

consumers are dedicated is discussed in Section 4.3.4. As argued in Section 4.2.3, the oper-

ational decisions about Product P and Product S can be made separately. Therefore, our

discussion in this section is for a single product, say Product P. Accordingly, we simplify the

notation by avoiding the subscript that represents the product (e.g., c1,p is simply denoted

as c1).

4.3.1 Monopoly Setting (Model M)

Consider the situation where Firm 1 is the only supplier of Product P in the market. We

assume that the firm can decide the price of the product directly, and then produce to meet
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the generated demand. We also assume c1 < α and c
′
1 < α. In Section 4.3.1, we discuss the

scenario when the firm does not implement the symbiotic system and the scenario when the

firm implements the symbiotic system.

No Symbiotic System For Firm 1

If Firm 1 does not implement the symbiotic system, then it can only produce the regular

variant. Since the firm is the only supplier, only the regular variant is available in the market.

The optimal price, obtained by solving the firm’s profit maximization problem, is given in

Theorem 4.3.1. Since this is a standard result under a monopoly setting, we avoid providing

the proof.

Theorem 4.3.1 In Model M, if Firm 1 does not implement the symbiotic system, then the

optimal price of the regular variant is p∗r = (1+2b1)α+c1
2(1+b1)

.

Symbiotic System For Firm 1

In this case, the firm can produce both the regular and green variants. The optimal prices

for the variants are summarized in the following result.

Theorem 4.3.2 In Model M, if Firm 1 implements the symbiotic system, the optimal price

of regular variant is p∗r =
α+c

′
1

2
and the optimal price of green variant is p∗g =

aα+c
′
1

2
.

Proof: We consider four scenarios.

Scenario M1: 0 < pg ≤ pr

Since Firm 1 charges a lower price for the green variant, all consumers choose to buy either

a green variant or nothing. The aggregate market demand is as follows:
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Qr = 0, Qg = (α− pg)θ1 + (α− pg

a
)(1− θ1).

Thus, Firm 1 faces the following profit-maximization problem:

max
pr,pg

π1 = (pg − c
′
1)Qg = (pg − c

′
1)[(α− pg)θ1 + (α− pg

a
)(1− θ1)].

The optimal price and optimal profit are as follows:

p∗r ≥ p∗g =
aα + (a− 1)θ1c

′
1 + c

′
1

2[(a− 1)θ1 + 1]
, πM1

1 =
[aα− (a− 1)θ1c

′
1 − c

′
1]

2

4a[(a− 1)θ1 + 1]
.

Scenario M2: pr ≤ pg ≤ apr

Under this scenario, regular consumers purchase either the regular variant or nothing. Mean-

while, flexible and dedicated green consumers purchase either the green variant or nothing.

The aggregate market demand is as follows:

Qr = (α− pr)θ1, Qg = (α− pg

a
)(1− θ1).

Thus, Firm 1 faces the following profit-maximization problem.

max
pr,pg

π1 = (pr − c
′
1)Qr + (pg − c

′
1)Qg

= (pr − c
′
1)(α− pr)θ1 + (pg − c

′
1)(α−

pg

a
)(1− θ1).

The optimal solution is in Table 4.3.

Since p∗r =
α+c

′
1

2
, p∗g =

aα+c
′
1

2
, a ≥ 1, we have p∗r ≤ p∗g ≤ ap∗r. Thus, Firm 1’s maximum profit

under Scenario M2 is πM2
1 =

θ1(α−c
′
1)2

4
+

(1−θ1)(aα−c
′
1)2

4a
.
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Table 4.3. The Optimal Results Under Scenario M2.

Regular Market Green Market

Q∗ θ1(α−c
′
1)

2

(1−θ1)(aα−c
′
1)

2a

p∗ α+c
′
1

2

aα+c
′
1

2

π∗1
θ1(α−c

′
1)2

4

(1−θ1)(aα−c
′
1)2

4a

We compare the profits under scenarios M1 and M2.

πM2
1 − πM1

1 =
θ1(α− c

′
1)

2

4
+

(1− θ1)(aα− c
′
1)

2

4a
− [aα− (a− 1)θ1c

′
1 − c

′
1]

2

4a[(a− 1)θ1 + 1]

=
θ1(1− θ1)(a− 1)2α2

4[(a− 1)θ1 + 1]
> 0.

Scenario M3: (a− 1)α + pr ≤ pg ≤ aα

Under this scenario, regular and flexible green consumers purchase either the regular variant

or nothing. Dedicated green consumers purchase either the green variant or nothing. The

aggregate market demand is as follows:

Qr = (α− pr)(θ1 + θ2), Qg = (α− pg

a
)θ3.

Thus, Firm 1 faces the following profit-maximization problem:

max
pr,pg

π1 = (pr − c
′
1)Qr + (pg − c

′
1)Qg

= (pr − c
′
1)(α− pr)(θ1 + θ2) + (pg − c

′
1)(α−

pg

a
)θ3

s.t. (a− 1)α + pr ≤ pg ≤ aα.

We first solve the unconstrained problem; the corresponding optimal solution is as follows:

Clearly, Firm 1’s maximum profit is bounded from above by that of the unconstrained

problem. Thus,

πM3
1 ≤ (θ1 + θ2)(α− c

′
1)

2

4
+

θ3(aα− c
′
1)

2

4a
.
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Table 4.4. Optimal Results for Firm 1’s Unconstrained Problem, under Scenario M3.

Regular Market Green Market

Q∗ (θ1+θ2)(α−c
′
1)

2

θ3(aα−c
′
1)

2a

p∗ α+c
′
1

2

aα+c
′
1

2

π∗1
(θ1+θ2)(α−c

′
1)2

4

θ3(aα−c
′
1)2

4a

We can then compare the profits under Scenarios M2 and M3.

πM2
1 − πM3

1 ≥ θ1(α− c
′
1)

2

4
+

(1− θ1)(aα− c
′
1)

2

4a
− (θ1 + θ2)(α− c

′
1)

2

4
− θ3(aα− c

′
1)

2

4a

= θ2[
(aα− c

′
1)

2

4a
− (α− c

′
1)

2

4
]

=
θ2(a− 1)[aα2 − (c

′
1)

2]

4a
> 0.

Scenario M4: apr ≤ pg ≤ (a− 1)α + pr

Under this scenario, regular consumers purchase the regular variant or nothing and dedicated

green consumers purchase the green variant or nothing. Among flexible green consumers,

some buy the regular variant, some others buy the green variant, and the remaining buy

nothing. The aggregate market demand is as follows:

Qr = (α− pr)θ1 +
pg − apr

a− 1
θ2, Qg = (α− pg

a
)θ3 + (α− pg − pr

a− 1
)θ2.

The firm’s total profit can be written as follows:

max
pr,pg

π1 = Qrpr + Qgpg − c
′
1(Qr + Qg)

= −(θ1 +
aθ2

a− 1
)p2

r +
2θ2

a− 1
pgpr + [αθ1 + c

′
1(θ1 + θ2)]pr

−(
θ3

a
+

θ2

a− 1
)p2

g + [α(θ2 + θ3) + c
′
1

θ3

a
]pg − αc

′
1

s.t. pg − apr ≥ 0,

(a− 1)α + pr − pg ≥ 0.
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The Lagrangean and the Karush-Kuhn-Tucker optimality conditions are:

L(pr, pg) = π1 + λ1(pg − apr) + λ2[(a− 1)α + pr − pg]

∂L

∂pr

= −2(θ1 +
aθ2

a− 1
)pr +

2θ2

a− 1
pg + [αθ1 + c

′
1(θ1 + θ2)]

−aλ1 + λ2 = 0

∂L

∂pg

= −2(
θ3

a
+

θ2

a− 1
)pg +

2θ2

a− 1
pr + [α(θ2 + θ3) + c

′
1

θ3

a
]

+λ1 − λ2 = 0

λ1(pg − apr) = 0,

λ2[(a− 1)α + pr − pg] = 0.

• Scenario M4.1: λ1 = 0 and λ2 = 0

Solving the above system, we have

p∗g =
aα + c

′
1

2
, p∗r =

α + c
′
1

2
.

However, since p∗g − ap∗r =
(1−a)c

′
1

2
< 0, the solution is invalid.

• Scenario M4.2: pg = apr

We can rewrite the demand functions as follows:

Qr = (α− pr)θ1, Qg = (α− pg

a
)(1− θ1).

Thus, the objective function has the same form as in Scenario M2. However, the

optimization problem here has an additional constraint pg = apr. Thus, the optimal

value obtained in Scenario M2 is at least as good as that under Scenario M4.2.
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• Scenario M4.3: pg = (a− 1)α + pr

We can rewrite the demand functions as follows:

Qr = (α− pr)(θ1 + θ2), Qg = (α− pg

a
)θ3.

Thus, the objective function has the same form as in Scenario M3. However, the

optimization problem here has an additional constraint pg = (a− 1)α + pr. Thus, the

optimal value obtained in Scenario M3 is at least as good as that under Scenario M4.3.

Combining the analysis above, we can conclude that the decisions obtained under Scenario

M2 are optimal. This completes the proof.

The argument in the proof of Theorem 4.3.2 shows that the optimal setting of the prices

corresponds to the scenario when regular consumers buy the regular variant, while all the

flexible and dedicated green consumers buy the green variant. We note the following two

implications.

Corollary 4.3.3 Under a monopoly, if Firm 1 implements the symbiotic system, then it will

avoid charging a price for the green variant that is high enough to drive (some) flexible green

consumers to the regular variant. Under optimal prices for the regular and green variants,

no flexible green consumer switches to the regular variant.

Consequently, under the optimal prices, the behavior of flexible green consumers and dedi-

cated green consumers is the same.

Corollary 4.3.4 Under a monopoly, green consumers’ type (either flexible or dedicated)

does not affect Firm 1’s optimal decisions.
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Next, we discuss the situation when Firm 1 faces a competitor. We first justify our choice

of the setting to analyze competition and then specify two assumptions on the production

amounts in equilibrium.

4.3.2 The Challenges in the Model Setting under Competition

The first challenge is to choose the type of competition. There are two possible settings: price

and quantity. If we assume that the two firms compete on price, then under the assumption

of a homogenous product, the firm with a lower variable production cost sets an equilibrium

price just below the other firm’s variable production cost. Thus, the sales for the high-cost

firm become 0, while the low-cost firm captures the entire market. This is hardly the case

in practice. Therefore, we choose to use Cournot competition and let the firms compete on

quantity. If a firm is the only one to provide a given variant, we assume that it can decide

the price of that variant directly.

The next challenge is to determine the market price of the regular variant. In our setting, we

have three types of consumers and two variants of the product. The flexible green consumers

may purchase the regular variant, when the price of the green variant is high enough. Thus,

the information about the prices of the two variants is needed to determine the demand from

the flexible green consumers for the regular variant. However, under Cournot competition,

the price of the regular variant is determined by the total demand of that variant. To break

this deadlock, we make the following assumption: the market price of the regular variant is

determined by the Cournot inverse demand function of the regular consumers.

The third challenge is to assign the flexible green consumers’ demand of the regular variant
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(if any) to the firms. There are two general approaches: (1) both firms share this demand

(either equally or based on market share), and (2) one firm (e.g., the powerful one) exclusively

supplies this demand. We choose the latter approach. Note that there is no technical

difficulty to pursue the former approach. When Firm 1 can produce the green variant and

Firm 2 cannot, each firm decides its production quantity of the regular variant. The market

price of the regular variant is determined by the combined production quantity of both firms.

Thus, each firm only partially influences the market price of the regular variant. Meanwhile,

Firm 1 decides the price of the green variant directly. Thus, Firm 1 is relatively more

influential in deciding the market prices of the two variants. We emphasize this advantage

by allocating the demand of the regular variant from the flexible green consumers to Firm 1.

To focus our analysis on realistic situations, we make the following two assumptions:

1. If a firm has the option to label its product as the green variant, then it will produce

a positive amount of the green variant. Thus, the firm has two choices: (i) providing

only the green variant, or (ii) providing both regular and green variants.

The theoretically possible scenario, in which a firm provides only the regular variant

even if it can label its product as green, is rarely seen in practice. A firm will naturally

be reluctant to forgo the opportunity to exploit the more-profitable green market.

Under Cournot competition, since the price of a variant is determined by the total

production quantities of two firms, neither firm can directly decide the prices of both

variants. Thus, a firm’s action of providing both regular and green variants is legal

from the viewpoint of anti-price discrimination regulations (e.g., the Robinson-Patman

Act).
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2. The total amount of the product (i.e., the sum of the regular and green variants of the

product, as applicable) produced by each firm is positive.

As mentioned earlier, we avoid considering the situation where a firm drives its com-

petitor out of the market.

The Chosen Setting under Competition

We assume two firms, Firm 1 and Firm 2, in the market. Competition is realized via the

following 2-stage game.

• Stage 1. Each firm indicates the types of variants it will produce. If a firm has the

option of labeling its product as the green variant, then it has two choices: (1) providing

only the green variant, or (2) providing both the regular and green variants. Each firm

decides its choice and makes this decision public.

• Stage 2. If there are two firms who produce a given variant, then the firms decide their

individual production quantities simultaneously. The market price of this variant is

then determined by the corresponding Cournot demand function. If a firm is the only

one to provide a given variant, then it decides the price of that variant directly.

For consistency, we continue to use the notation defined in Section 4.2. We need the following

additional notation.

Notation:

q2 The production quantity of Firm 2.
C2(q2) The production cost of Firm 2 to produce q2 units of product; C2(q2) =

c2q2.
π2 The profit of Firm 2.
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Although equilibrium results can be obtained in the presence of both dedicated and flexible

green consumers, (i.e., θ2 > 0, θ3 > 0), for the purpose of deriving managerial insights, we

restrict our analysis to two special cases: (i) θ2 = 0 (all green consumers are dedicated), (ii)

θ3 = 0 (all green consumers are flexible). The case when all green consumers are flexible is

considered in Section 4.3.3. The case in which all green consumers are dedicated is analyzed

in Section 4.3.4.

4.3.3 Presence of a Competitor When All Green Consumers Are Flexible

In this case, depending on the prices of the green and regular variants, the green consumers

may choose to buy either one. As described in Section 4.2.2, consumers’ demand for the

regular and green variants has multiple possible forms. We focus our attention here on the

more advantageous special case (for Firm 1) in which the competitor only produces the

regular variant and Firm 1 decides to implement the symbiotic system.

Symbiotic System For Firm 1

Recall our assumption that both firms produce positive amounts of the product. Since Firm 2

can only produce the regular variant, a necessary condition for this to occur is that the price

of the regular variant is lower than that of the green variant but higher than Firm 2’s variable

production cost (c2 < p∗r < p∗g). If Firm 1’s variable production cost after implementation is

less than Firm 2’s variable production cost (c
′
1 < c2), then the former is lower than the price

of the regular variant as well (c
′
1 < p∗r). Thus, Firm 1 only producing the green variant is not

an equilibrium, since Firm 1 can always improve its profit by providing a nonzero amount of
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the regular variant, and gain additional profit. Thus, in equilibrium, Firm 1 provides both

regular and green variants, while Firm 2 only provides the regular variant. The following

result summarizes the equilibrium prices under three possible parameter settings.

Theorem 4.3.5 When a > 1 and c
′
1 < c2 < 1

2
[α+

c
′
1

a(1−θ1)+θ1
], if Firm 1 implements the sym-

biotic system, then there are three possible equilibria (depending on parametric relationships).

These are described below and pictorially illustrated in Figure 4.4.
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Figure 4.4. Categorization of Equilibria Based on the Competitor’s Variable Production

Cost (c2), when a > 1, c
′
1 < θ1α

2(1+θ1)
, and c

′
1 < c2 < 1

2
[α +

c
′
1

a(1−θ1)+θ1
].

1. If c
′
1 < θ1α

2(1+θ1)
, then

• Type I: If [α
2
− (1− 3

2a
)c
′
1] < c2 < 1

2
[α +

c
′
1

a(1−θ1)+θ1
], then we have

pI
g =

aα + c
′
1

2
, qI

1,r =
θ1(α− 2c

′
1 + c2)

3
, qI

2,r =
θ1(α + c

′
1 − 2c2)

3
.

• Type II: If (α
2
− 1

θ1
c
′
1) ≤ c2 ≤ [α

2
− (1− 3

2a
)c
′
1], then we have

pII
g =

a(a + θ1 − aθ1)α + ac
′
1 + aθ1c2

2a(1− θ1) + 3θ1

, qII
1,r =

θ1[θ1α− 2c
′
1 + (2a− 2aθ1 + θ1)c2]

2a(1− θ1) + 3θ1

,

qII
2,r =

θ1[(a− aθ1 + θ1)α + c
′
1 − 2(a− aθ1 + θ1)c2]

2a(1− θ1) + 3θ1

.

• Type III: If c
′
1 < c2 < (α

2
− 1

θ1
c
′
1), then we have

pIII
g =

(2a + aθ1 − θ1)α + 2c
′
1 + 2θ1c2

2(2 + θ1)
,
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qIII
1,r =

θ1[θ1α− 2c
′
1 + (2− θ1)c2]

2 + θ1

, qIII
2,r =

θ1(α + c
′
1 − 2c2)

2 + θ1

.

2. If θ1α
2(1+θ1)

≤ c
′
1 < aα

4a−3
, then the region representing Type III vanishes.

3. If aα
4a−3

≤ c
′
1 < α

2− 1
a(1−θ1)+θ1

, then the regions representing Type II and III vanish.

Proof: In equilibrium, Firm 1 provides both regular and green variants. Firm 2 only provides

the regular variant. Recall that among the multiple price settings described in Section 4.2.2,

only pr < pg ≤ apr and apr ≤ pg < (a− 1)α+ pr guarantee the existence of both regular and

green variants in equilibrium. Thus, following our assumptions in Section 4.3.2, we consider

only these two price settings in our analysis.

1. If c
′
1 < θ1α

2(1+θ1)

We first consider the values of the lower and upper bounds of c2. Since a > 1, a(1−θ1)+

θ1 decreases with an increase in θ1. Thus, for 0 ≤ θ1 ≤ 1, we have 1 ≤ a(1−θ1)+θ1 ≤ a.

Therefore, we have α
2

+
c
′
1

2a
≤ 1

2
[α +

c
′
1

a(1−θ1)+θ1
] ≤ α

2
+

c
′
1

2
. Thus, c2 < 1

2
[α +

c
′
1

a(1−θ1)+θ1
] ≤

(α
2

+
c
′
1

2
).

Since a > 1, 0 ≤ θ1 ≤ 1, and c
′
1 < θ1α

2(1+θ1)
, we have

(
α

2
+

c
′
1

2a
)− [

α

2
− (1− 3

2a
)c
′
1] = (1− 1

a
)c
′
1 > 0,

[
α

2
− (1− 3

2a
)c
′
1]− (

α

2
− 1

θ1

c
′
1) = (

3

2a
+

1− θ1

θ1

)c
′
1 > 0,

(
α

2
− 1

θ1

c
′
1)− c

′
1 >

α

2
− (1 +

1

θ1

)
θ1α

2(1 + θ1)
= 0.

Thus, c
′
1 < (α

2
− 1

θ1
c
′
1) < [α

2
− (1 − 3

2a
)c
′
1] < (α

2
+

c
′
1

2a
) ≤ 1

2
[α +

c
′
1

a(1−θ1)+θ1
]. Therefore,

all the three regions, which represent the corresponding three types of equilibria, have

positive lengths.
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We now consider three scenarios:

Scenario D1: pr < pg < apr

Under this scenario, regular consumers only purchase regular products and flexible

green consumers only purchase green products. The aggregate market demand is

as follows:

Qr = (α− pr)θ1, Qg = (α− pg

a
)(1− θ1).

Thus, we have pr = α− q1r+q2r

θ1
. Firm 1’s total profit can be written as follows:

max
q1r,pg

π1 = q1r(pr − c
′
1) + Qg(pg − c

′
1)

= q1r(α− q1r + q2r

θ1

− c
′
1) + (α− pg

a
)(1− θ1)(pg − c

′
1).

The first-order conditions are

∂π1

∂q1r

= α− q1r + q2r

θ1

− c
′
1 −

q1r

θ1

= 0, (4.1)

∂π1

∂pg

= (α− pg

a
)(1− θ1)− (1− θ1)(pg − c

′
1)

a
= 0. (4.2)

Next we find the Hessian for π1(q1r, pg)

H(q1r, pg) =



− 2

θ1
0

0 −2(1−θ1)
a




Since H1(q1r, pg) = − 2
θ1

< 0, H2(q1r, pg) = (− 2
θ1

)(−2(1−θ1)
a

) > 0, the first-order

conditions are both necessary and sufficient.

Firm 2’s profit is maxq2r π2 = (pr − c2)q2r = (α− q1r+q2r

θ1
− c2)q2r. The first-order

condition is

∂π2

∂q2r

= α− q1r + q2r

θ1

− c2 − q2r

θ1

= 0 (4.3)
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Solving (4.1), (4.2), and (4.3), we obtain the following solution:

Regular Market Green Market

q∗1
θ1(α−2c

′
1+c2)

3
(1−θ1)(aα−c

′
1)

2a

q∗2
θ1(α+c

′
1−2c2)
3 0

p∗ α+c
′
1+c2
3

aα+c
′
1

2

Verifying Validity: We now verify that the quantities derived above are all positive.

Since c
′
1 < c2 <

α+c
′
1

2 , we have α−2c
′
1 + c2 = (α− c

′
1)+(c2− c

′
1) > 0, and α+ c

′
1−2c2 >

0. Thus, q∗1,r > 0 and q∗2,r > 0. Also, since c
′
1 <

α+c
′
1

2 , we have c
′
1 < α < aα.

Thus, q∗1,g > 0. We also need to verify that the optimal prices satisfy the constraint

pr < pg < apr. We have pg − pr = (3a−2)α+c
′
1−2c2

6 ≥ α+c
′
1−2c2
6 > 0. We also have

apr − pg = −aα+(2a−3)c
′
1+2ac2

6 . Therefore, if c2 > α
2 − (1− 3

2a)c
′
1, then we have ap∗r > p∗g.

Thus, the above solution is valid.

Scenario D2: pg = apr

The aggregate market demand is the same as that in scenario D1. We have pr =

α− q1r+q2r

θ1
and pg = apr. Firm 1’s total profit can be written as follows:

max
q1r

π1 = q1r(pr − c
′
1) + Qg(apg − c

′
1)

= q1r(pr − c
′
1) + (α− pr)(1− θ1)(apr − c

′
1)

= q1r(α− q1r + q2r

θ1
− c

′
1) +

(q1r + q2r)
θ1

(1− θ1)[a(α− q1r + q2r

θ1
)− c

′
1].

The first-order condition is

∂π1

∂q1r
= α− q1r + q2r

θ1
− c

′
1 −

q1r

θ1
+

(1− θ1)
θ1

[a(α− q1r + q2r

θ1
)− c

′
1]

−a(q1r + q2r)
θ2
1

(1− θ1) = 0. (4.4)
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Firm 2’s profit is maxq2r π2 = (pr − c2)q2r = (α − q1r+q2r

θ1
− c2)q2r. The first-order

condition is

∂π2

∂q2r
= α− q1r + q2r

θ1
− c2 − q2r

θ1
= 0 (4.5)

Solving (4.4) and (4.5), we obtain the following solution:

Regular Market Green Market

q∗1
θ1[αθ1−2c

′
1+c2(2a−2aθ1+θ1)]

2a(1−θ1)+3θ1

(1−θ1)[α(a−aθ1+2θ1)−c
′
1−c2θ1]

2a(1−θ1)+3θ1

q∗2
θ1[α(a−aθ1+θ1)+c

′
1−2c2(a−aθ1+θ1)]

2a(1−θ1)+3θ1
0

p∗ α(a+θ1−aθ1)+c
′
1+c2θ1

2a(1−θ1)+3θ1

a[α(a+θ1−aθ1)+c
′
1+c2θ1]

2a(1−θ1)+3θ1

Verifying Validity: We now verify that the quantities derived above are all positive.

Since c
′
1 < c2, we have αθ1 − 2c

′
1 + c2(2a − 2aθ1 + θ1) = θ1(α − c

′
1) + (2 − θ1)(c2 −

c
′
1) + 2(a − 1)(1 − θ1)c2 > 0. Thus, q∗1,r > 0. Since c2 < 1

2 [α + c
′
1

a(1−θ1)+θ1
], we have

α(a−aθ1+θ1)+c
′
1−2c2(a−aθ1+θ1) > 0. Thus, q∗2,r > 0. Also, since c

′
1 < α and c2 < α,

we have α(a−aθ1 +2θ1)−c
′
1−c2θ1 > α(a−aθ1 +2θ1)−α−θ1α = α(a−1)(1−θ1) ≥ 0.

Thus, q∗1,g > 0.

Scenario D3: apr < pg < (a− 1)α + pr

Under this scenario, regular consumers purchase the regular variant or nothing. Among

flexible green consumers, some buy the regular variant, some others buy the green

variant, and the remaining buy nothing. The aggregate market demand is as follows:

Qr = (α− pr)θ1 +
pg − apr

a− 1
(1− θ1), Qg = (α− pg − pr

a− 1
)(1− θ1).

Recall our assumption (from Section 4.3.2) that the market price of the regular variant

is determined by the Cournot inverse demand function of the regular consumers. Thus,
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we have pr = α− q1r+q2r

θ1
. Firm 1’s total profit can be written as follows:

max
q1r,pg

π1 = [q1r +
pg − apr

a− 1
(1− θ1)](pr − c

′
1) + (α− pg − pr

a− 1
)(1− θ1)(pg − c

′
1)

= [q1r +
pg − a(α− q1r+q2r

θ1
)

a− 1
(1− θ1)](α− q1r + q2r

θ1
− c

′
1)

+(α− pg − (α− q1r+q2r

θ1
)

a− 1
)(1− θ1)(pg − c

′
1).

The firs-order conditions are

∂π1

∂q1r
= [1 +

a(1− θ1)
(a− 1)θ1

](α− q1r + q2r

θ1
− c

′
1)−

1
θ1

[q1r +

pg − a(α− q1r+q2r

θ1
)

a− 1
(1− θ1)]− (1− θ1)(pg − c

′
1)

θ1(a− 1)
= 0, (4.6)

∂π1

∂pg
=

1− θ1

a− 1
(α− q1r + q2r

θ1
− c

′
1) + (α− pg − (α− q1r+q2r

θ1
)

a− 1
)(1− θ1)

−1− θ1

a− 1
(pg − c

′
1) = 0. (4.7)

Next, we consider the Hessian for π1(q1r, pg)

H(q1r, pg) =



− 2(a−θ1)

θ2
1(a−1)

− 2(1−θ1)
θ1(a−1)

− 2(1−θ1)
θ1(a−1) −2(1−θ1)

a−1




Since H1(q1r, pg) = − 2(a−θ1)
θ2
1(a−1)

< 0, H2(q1r, pg) = 4(1−θ1)
θ2
1(a−1)

> 0, the first-order conditions

are both necessary and sufficient.

Firm 2’s profit is

max
q2r

π2 = (pr − c2)q2r

= (α− q1r + q2r

θ1
− c2)q2r

The first-order condition is

∂π2

∂q2r
= α− q1r + q2r

θ1
− c2 − q2r

θ1
= 0 (4.8)
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Solving (4.6), (4.7), (4.8), we obtain the following solution:

Regular Market Green Market

q∗1
θ1[αθ1−2c

′
1+c2(2−θ1)]

2+θ1

α(1−θ1)
2

q∗2
θ1(α+c

′
1−2c2)

2+θ1
0

p∗ α+c
′
1+c2θ1

2+θ1

α(2a+aθ1−θ1)+2c
′
1+2c2θ1

2(2+θ1)

Verifying Validity: Since c
′
1 < c2 and c

′
1 < α, we have αθ1 − 2c

′
1 + c2(2 − θ1) =

θ1(α− c
′
1)+ (2− θ1)(c2− c

′
1) > 0. Thus, q∗1,r > 0. Since c2 < (α

2 + c
′
1
2 ), we have q∗2,r > 0.

Also, q∗1,g > 0.

We also need to verify that the optimal prices satisfy the constraint pg ≥ apr. We have

pg − apr = (a−1)(θ1α−2c
′
1−2θ1c2)

2(2+θ1) . Thus, if c2 < (α
2 − 1

θ1
c
′
1), then we have pg − apr > 0.

We consider the two interior solutions in scenario D1 and scenario D3 (given that each

satisfies the corresponding constraint) and one boundary solution in scenario D2. The

equilibrium prices in these three scenarios are categorized and validated as follows:

- Type I: If pr < pg < apr, we have

p∗r =
α + c

′
1 + c2

3
, p∗g =

aα + c
′
1

2

Under the imposed condition, [α
2
− (1− 3

2a
c
′
1)] < c2 < 1

2
[α +

c
′
1

a(1−θ1)+θ1
], we indeed

have have p∗r < p∗g < ap∗r.

- Type II: If apr = pg, we have

p∗r =
(a + θ1 − aθ1)α + c

′
1 + θ1c2

2a(1− θ1) + 3θ1

, p∗g =
a(a + θ1 − aθ1)α + ac

′
1 + aθ1c2

2a(1− θ1) + 3θ1
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- Type III: If apr < pg < (a− 1)α + pr, we have

p∗r =
α + c

′
1 + θ1c2

2 + θ1

, p∗g =
(2a + aθ1 − θ1)α + 2c

′
1 + 2θ1c2

2(2 + θ1)

Under the imposed condition, c
′
1 < c2 < (α

2
− 1

θ1
c
′
1), we have ap∗r < p∗g < (a −

1)α + p∗r.

Since [α
2
− (1− 3

2a
c
′
1)] > [α

2
− 1

θ1
c
′
1], Type I and Type III solutions cannot both be valid.

When either of these two solutions is valid, it is straightforward to show that the valid

solution is also better than the Type II solution. When neither is valid, the Type II

solution is optimal.

2. If θ1α
2(1+θ1)

≤ c
′
1 < aα

4a−3

We have

(
α

2
+

c
′
1

2a
)− [

α

2
− (1− 3

2a
)c
′
1] = (1− 1

a
)c
′
1 > 0,

[
α

2
− (1− 3

2a
)c
′
1]− c

′
1 >

α

2
− (2− 3

2a
)

aα

4a− 3
= 0,

(
α

2
− 1

θ1

c
′
1)− c

′
1 ≤

α

2
− (1 +

1

θ1

)
θ1α

2(1 + θ1)
= 0.

Thus, (α
2
− 1

θ1
c
′
1) ≤ c

′
1 < [α

2
− (1 − 3

2a
c
′
1)] < (α

2
+

c
′
1

2a
). Therefore, only the two regions

corresponding to Types I and II equilibria have positive lengths.

3. If aα
4a−3

≤ c
′
1 < α

2− 1
a(1−θ1)+θ1

We have [α
2
− (1− 3

2a
)c
′
1] ≤ c

′
1 < (α

2
+

c
′
1

2a
). Only the region corresponding to the Type I

equilibrium has positive length.

This completes the proof.
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Note that in both Type I and Type II equilibria, all the flexible green consumers buy either

the green variant or nothing. In the Type III equilibrium, some flexible green consumers

switch to the regular variant. As a consequence, we have the following corollary.

Corollary 4.3.6 When the competitor’s cost disadvantage is marginal (c2 is in Region III

of Figure 4.4), Firm 1 does not have the power to retain all the green consumers. Some

low-end flexible green consumers switch to the regular variant. When the competitor’s cost

disadvantage increases (c2 is in either Region I or Region II), Firm 1 obtains this power.

4.3.4 Presence of a Competitor When All Green Consumers Are Dedicated

When all green consumers are dedicated, they purchase either the green variant or nothing.

Thus, the demand of the green variant is unaffected by the price of the regular variant. Ac-

cordingly, only the price of the green variant determines its demand. Recall in Section 4.2.2,

we list the aggregate market demand under various scenarios. Due to the absence of the

flexible green consumers, the aggregate market demand now has only two different forms

when both regular and green variants are available.

(i) pg ≤ pr

Under this scenario, all consumers purchase either the green variant or nothing. The

aggregate market demand is as follows:

Qr = 0, Qg = (α− pg)θ1 + (α− pg

a
)(1− θ1).

(ii) pg > pr

Under this scenario, the regular consumers purchase either the regular variant or noth-

ing. Meanwhile, the green consumers purchase either the green variant or nothing.
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The aggregate market demand is as follows:

Qr = (α− pr)θ1, Qg = (α− pg

a
)(1− θ1).

Since our goal is to avoid exploring all theoretical possibilities and, instead, focus on practically-

relevant scenarios in which the two firms enjoy healthy competition, we impose the following

assumption: The two competing firms have similar production economies. In other words,

both firms’ variable production costs are of the same magnitude, both before and after

Firm 1’s implementation of the symbiotic system. Specifically, we assume that 2c1 − α <

c2 < α+c1
2

and 2c
′
1 − α < c2 <

α+c
′
1

2
. This assumption is reasonable in practice, since a sig-

nificant difference in the production costs of the two firms will typically result in the weaker

firm being driven out of the market.

Next, we first describe Model CR, in which Firm 1 faces a competitor (Firm 2) that only

produces the regular variant of the product. The case in which the competitor produces the

green variant (Model CG) is analyzed later.

No Symbiotic System For Firm 1 Under Model CR

In the absence of the symbiotic system, only the regular variant is available in the market.

Thus, both firms compete only in the regular market, where all consumers have the same

distribution of valuation. The following result states the equilibrium solution. Since the

proof is straightforward, we avoid providing it.

Theorem 4.3.7 In Model CR, if Firm 1 does not implement the symbiotic system, the

equilibrium production quantities of the two firms are: q∗1 = α−2c1+c2
4b1+3

(Firm 1), q∗2 =

(2b1+1)α+c1−2(b1+1)c2
4b1+3

(Firm 2).
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Symbiotic System For Firm 1 Under Model CR

If Firm 1 implements the symbiotic system, then it has the option of labeling its product

as the green variant. The two choices for Firm 1 are (1) Strategy g: provide only the green

variant or (2) Strategy rg: provide both the regular and green variants. Let πg
1 (resp.,

πrg
1 ) denote Firm 1’s profit under Strategy g (resp., Strategy rg). There are two questions:

in equilibrium, (i) which strategy will Firm 1 choose? and (ii) what are the production

quantities of each variant for each firm? The following result answers these questions.

Theorem 4.3.8 In Model CR, if Firm 1 implements the symbiotic system, it will provide

both regular and green variants. The equilibrium production quantities are: q∗1,r =
θ1(α−2c

′
1+c2)

3
,

q∗2,r =
θ1(α+c

′
1−2c2)

3
, and q∗1,g =

(1−θ1)(aα−c
′
1)

2a
.

Proof: Recall that the aggregate market demand has two different forms under two scenarios.

Since Firm 2 only produces the regular variant, the condition for Firm 2 to produce positive

amount in equilibrium is pg > pr. Thus, we only consider this scenario in the following

analysis. We consider Firm 1’s two choices separately.

• Strategy rg

Firm 1 provides both regular and green variants, while Firm 2 provides the regular variant.

When pr < pg, we have Qr = (α− pr)θ1, Qg = (α− pg

a
)(1− θ1).

Firm 1’s profit-maximization problem is as follows:

max
q1r,pg

π1 = q1r(pr − c
′
1) + Qg(pg − c

′
1)

= q1r(α− q1r + q2r

θ1

− c
′
1) + (α− pg

a
)(1− θ1)(pg − c

′
1).
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Thus ,we have

∂π1

∂q1r

= α− q1r + q2r

θ1

− c
′
1 −

q1r

θ1

= 0 (4.9)

∂π1

∂pg

= (α− pg

a
)(1− θ1)− (1− θ1)(pg − c

′
1)

a
= 0. (4.10)

Firm 2 faces the following problem:

max
q2r

π2 = (pr − c2)q2r = (α− q1r + q2r

θ1

− c2)q2r.

We can obtain the first order condition:

∂π2

∂q2r

= α− q1r + q2r

θ1

− c2 − q2r

θ1

= 0 (4.11)

By solving equations 4.9, 4.10, and 4.11 simultaneously, we obtain the following equilibrium:

q∗1,r =
θ1(α− 2c

′
1 + c2)

3
, q∗2,r =

θ1(α + c
′
1 − 2c2)

3
, q∗1,g =

(1− θ1)(aα− c
′
1)

2a
,

p∗r =
α + c

′
1 + c2

3
, p∗g =

aα + c
′
1

2
.

To check the validity of this solution, we first examine the difference between the prices of

the two variants. We have p∗g − p∗r =
(3a−2)α+c

′
1−2c2

6
≥ α+c

′
1−2c2
6

. Since c2 <
α+c

′
1

2
, we have

p∗r < p∗g.

We then check whether all the production quantities are positive. Since c2 > 2c
′
1 − α,

we have q∗1,r > 0. Since c2 <
α+c

′
1

2
, we have q∗2,r > 0. Since c

′
1 < α and a ≥ 1, we

have q∗1,g > 0. Thus, the solution above is valid. Firm 1’s profit under Strategy rg is

πrg
1 =

(1−θ1)(aα−c
′
1)2

4a
+

θ1(α−2c
′
1+c2)2

9
.
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• Strategy g

Then Firm 1 only provides the green variant, while Firm 2 provides the regular variant.

According to Assumption 3, Firm 2 produces positive amount of product. Thus, the price of

the regular variant should be less than that of the green variant. Therefore, Firm 1 can only

obtain profit from the green consumers. Note that, Firm 1’s maximum profit from the green

consumers is
(1−θ1)(aα−c

′
1)2

4a
. Thus, Firm 1’s profit under Strategy g, πg

1 ≤ (1−θ1)(aα−c
′
1)2

4a
< πrg

1 .

The result follows.

Next, we consider the case in which a competitor has the ability to produce the green variant.

No Symbiotic System For Firm 1 Under Model CG

Under Model CG, we consider a competitor that also has the ability to produce the green

variant. If Firm 1 does not implement the symbiotic system, then only Firm 2 has the option

to label its product as the green variant. Firm 2 has two strategies, g and rg. The following

result states the equilibrium.

Theorem 4.3.9 In Model CG, if Firm 1 does not implement the symbiotic system, then

Firm 2 will provide both regular and green variants. The equilibrium production quantities

are: q∗1,r = θ1(α−2c1+c2)
3+4b1θ1

, q∗2,r = θ1[(2b1θ1+1)α+c1−2(b1θ1+1)c2]
3+4b1θ1

, and q∗2,g = (1−θ1)(aα−c2)
2a

.

Proof: Since Firm 2 can provide either only the green variant or both the regular and the

green variants, there are two possible scenarios.

1. Firm 2 chooses Strategy rg:

Firm 1 provides the regular variant and Firm 2 provides both regular and green variants.
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By using an approach similar to that in the proof of Theorem 4.3.8, we have the following

equilibrium:

q∗1,r =
θ1(α− 2c1 + c2)

3 + 4b1θ1

, q∗2,r =
θ1[(2b1θ1 + 1)α + c1 − 2(b1θ1 + 1)c2]

3 + 4b1θ1

,

q∗2,g =
(1− θ1)(aα− c2)

2a
, p∗r =

(2b1θ1 + 1)α + c1 + (2b1θ1 + 1)c2

3 + 4b1θ1

, p∗g =
aα + c2

2
.

To check the validity of this solution, we first examine the difference between the prices of

the two variants. We have p∗g − p∗r = [a(3+4b1θ1)−(2+4b1θ1)]α−2c1+c2
2(3+4b1θ1)

. Since c2 > 2c1−α, we have

[a(3 + 4b1θ1)− (2 + 4b1θ1)]α− 2c1 + c2 > (a− 1)(3 + 4b1θ1)α ≥ 0. Thus, p∗g − p∗r > 0. Since

c2 > 2c1 − α, we have q∗1,r > 0. Also, c2 < α+c1
2

implies [(2b1θ1 + 1)α + c1 − 2(b1θ1 + 1)c2] >

b1θ1(α − c1) ≥ 0. Thus, we have q∗2,r > 0. Since c2 < α and a ≥ 1, we have q∗2,g > 0. Thus,

the solution above is valid.

Firm 2’s profit under Strategy rg is πrg
2 = (1−θ1)(aα−c2)2

4a
+ θ1[(2b1θ1+1)α+c1−2(b1θ1+1)c2]2

(3+4b1θ1)2
.

2. Firm 2 chooses Strategy g:

Then, Firm 1 provides the regular variant, while Firm 2 provides the green variant.

Since Firm 1 produces a positive amount (Assumption 3 above), the price of the regular

variant is less than that of the green variant. Therefore, Firm 2 derives its entire profit from

the green consumers; the maximum value of this profit is (1−θ1)(aα−c2)2

4a
. Thus, Firm 2’s profit

under Strategy g, πg
2 ≤ (1−θ1)(aα−c2)2

4a
< πrg

2 .

The result follows.
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Symbiotic System For Firm 1 Under Model CG

Under this setting, both firms are capable of offering both variants. Each firm has two

strategies. We denote πj,k
i as Firm i’s profit if Firm 1 chooses Strategy j and Firm 2 chooses

Strategy k; i ∈ {1, 2}, j, k ∈ {g, rg}. The following result shows that both firms provide

both regular and green variants in equilibrium and derives the corresponding production

quantities. The payoffs of the two firms under the four scenarios are listed in Table 4.5.

Table 4.5. The Two Firms’ Payoffs when Both can Provide Regular and Green Variants.

Firm 2’s Strategy
Only Green Regular & Green

Firm 1’s Only Green (πg,g
1 , πg,g

2 ) → (πg,rg
1 , πg,rg

2 )
↓ ↓

Strategy Regular & Green (πrg,g
1 , πrg,g

2 ) → (πrg,rg
1 , πrg,rg

2 )

Theorem 4.3.10 In Model CG, if Firm 1 implements the symbiotic system, then in equilib-

rium, both firms provide both the regular and the green variants. The equilibrium production

quantities are:

qr∗
1 =

θ1(α− 2c
′
1 + c2)

3
, qg∗

1 =
(1− θ1)(aα− 2c

′
1 + c2)

3a
,

qr∗
2 =

θ1(α + c
′
1 − 2c2)

3
, qg∗

2 =
(1− θ1)(aα + c

′
1 − 2c2)

3a
.

Proof: Since each firm has two strategies, there are four possible combinations. We derive

the payoffs of both firms under each combination in the following analysis.

1. Combination (g, g): If both firms only provide the green variant

All consumers choose to buy either a green variant or nothing. The aggregate market

demand is as follows:

q1,g + q2,g = Qg = (α− pg)θ1 + (α− pg

a
)(1− θ1).
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Thus, pg = α−q1,g−q2,g

θ1+
1−θ1

a

. The two firms face the following profit-maximization problems:

max
q1,g

π1 = (pg − c
′
1)q1,g,

max
q2,g

π2 = (pg − c2)q2,g.

By using the method similar to that used in the proof of Theorem 4.3.8, we obtain the

equilibrium results as follows:

p∗g =
1

3
[c
′
1 + c2 +

aα

1 + (a− 1)θ1

],

q∗1,g =
aα− 2c

′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1

3a
, q∗2,g =

aα + c
′
1 − 2c2 + (a− 1)(c

′
1 − 2c2)θ1

3a
,

π∗1 =
[aα− 2c

′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1]

2

9a[1 + (a− 1)θ1

,

π∗2 =
[aα + c

′
1 − 2c2 + (a− 1)(c

′
1 − 2c2)θ1]

2

9a[1 + (a− 1)θ1

.

We check whether the production quantities derived are positive.

- If (2c
′
1 − c2) ≥ 0, then [aα − 2c

′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1] reaches its minimum

when θ1 reaches its upper bound 1. Thus, aα − 2c
′
1 + c2 − (a − 1)(2c

′
1 − c2)θ1 ≥

aα − 2c
′
1 + c2 − (a− 1)(2c

′
1 − c2) = a(α − 2c

′
1 + c2). Since c2 > 2c

′
1 − α, we have

a(α− 2c
′
1 + c2) > 0. Thus, q∗1,g > 0.

- If (2c
′
1 − c2) < 0, then [aα − 2c

′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1] reaches its minimum

when θ1 reaches its lower bound 0. Thus, aα − 2c
′
1 + c2 − (a − 1)(2c

′
1 − c2)θ1 ≥

aα− 2c
′
1 + c2 ≥ (α− 2c

′
1 + c2) > 0. Thus, q∗1,g > 0.

Similarly, we can show q∗2,g > 0. Thus, the solution above is valid. These two firms’

profits are as follows.
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πg,g
1 =

[aα− 2c
′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1]

2

9a[1 + (a− 1)θ1]
,

πg,g
2 =

[aα + c
′
1 − 2c2 + (a− 1)(c

′
1 − 2c2)θ1]

2

9a[1 + (a− 1)θ1]
.

2. Combination (rg, rg): If both firms provide both regular and green variants

Under this scenario, both firms compete in both the regular and the green markets.

We obtain the equilibrium results as follows:

p∗r =
α + c

′
1 + c2

3
, p∗g =

aα + c
′
1 + c2

3
, q∗1,r =

θ1(α− 2c
′
1 + c2)

3
,

q∗2,r =
θ1(α + c

′
1 − 2c2)

3
, q∗1,g =

(1− θ1)(aα− 2c
′
1 + c2)

3a
, q∗2,g =

(1− θ1)(aα + c
′
1 − 2c2)

3a
.

We have p∗g−p∗r = (a−1)α
3

> 0. We can show all four production quantities are positive.

These two firms’ profits are as follows.

πrg,rg
1 =

θ1(α− 2c
′
1 + c2)

2

9
+

(1− θ1)(aα− 2c
′
1 + c2)

2

9a
,

πrg,rg
2 =

θ1(α + c
′
1 − 2c2)

2

9
+

(1− θ1)(aα + c
′
1 − 2c2)

2

9a
.

If we compare the profits under this setting with those under (g, g), we have

πrg,rg
1 − πg,g

1 =
θ1(1− θ1)(a− 1)2α2

9[1 + (a− 1)θ1]
≥ 0,

πrg,rg
2 − πg,g

2 =
θ1(1− θ1)(a− 1)2α2

9[1 + (a− 1)θ1]
≥ 0.

3. Combination (g, rg): If Firm 1 only provides the green variant, Firm 2 provides both

regular and green variants
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We now compare these two firms’ profits under this setting and those under the setting

(rg, rg). First, both firms obtain the same amount of profits from the green market

under both settings. Second, Firm 1 produces the regular variant under the setting

(rg, rg) but not under the setting (g, rg). Thus, in the regular market, Firm 1 obtains

positive profit under the setting (rg, rg) but 0 under the setting (g, rg). Third, in the

regular market, Firm 2 competes with Firm 1 under the setting (rg, rg) but is the

exclusive supplier under the setting (g, rg). Thus, Firm 2 obtains more profit in the

regular market under the setting (rg, rg) than under the setting (g, rg). Therefore, we

have the following results:

πrg,rg
1 > πg,rg

1 , πg,rg
2 > πrg,rg

2 .

4. Combination (rg, g): If Firm 1 provides both regular and green variants, Firm 2 only

provides the green variant

This scenario is similar to Combination (g, rg). If we compare these two firms’ profits

under this setting and under the setting (rg, rg), we have the following results:

πrg,g
1 > πrg,rg

1 , πrg,rg
2 > πrg,g

2 .

Now we derive the Nash equilibrium. Since we have πrg,g
1 > πrg,rg

1 > πg,g
1 and πrg,rg

1 > πg,rg
1 ,

Firm 1’s dominating strategy is rg no matter which strategy Firm 2 chooses. Similarly, we

have πrg,rg
2 > πrg,g

2 and πg,rg
2 > πrg,rg

2 > πg,g
2 . Thus, Firm 2’s dominating strategy is rg as

well. Therefore, (rg, rg) is the only Nash equilibrium. Both Firms provide both the regular

and the green variants. This completes the proof.

In the next section, we use the obtained results to derive some useful managerial insights.
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4.4 Understanding the Willingness to Implement the Symbiotic System

In the previous section, we derived Firm 1’s optimal (under monopoly) and equilibrium

(under competition) decisions, under various settings. These results enable us to assess the

firm’s profits both before and after the implementation of a symbiotic system. We interpret

the difference between these two profits as the firm’s “willingness” to implement the system.

Note that this difference may not always be positive. Accordingly, our interest is in un-

derstanding the forces that influence willingness and the impact on their relative strengths

with respect to changes in operational parameters, consumer characteristics, and compe-

tition. Section 4.4.1 (resp., Section 4.4.2) discusses the situation under Model M (resp.,

Model CR). We also briefly comment on the main differences under Model CG. Next, in

Section 4.4.3, we compare the firm’s willingness under monopoly with that under competi-

tion. Our focus is on analyzing the impact of the nature of competition (competitors offering

only the regular variants vs. both variants) and on identifying scenarios where competition

improves the firm’s willingness to implement. Finally, Section 4.4.4 discusses the impact of

the implementation of a symbiotic system on consumer welfare. Here, our aim is to identify

situations in which the firm’s willingness to implement is positive and consumers (as a whole)

benefit from the implementation as well.

For simplicity, when considering competition, we assume that green consumers are dedi-

cated. The case when green consumers are flexible can also be analyzed, but is technically

more cumbersome. To calculate the firm’s profits before and after implementation, we need

to consider the decisions for both Product P and Product S. Therefore, we introduce the

corresponding subscripts (p and s) to the notation defined for the single-product models in
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earlier sections. Let π∗1 (resp., π
′∗
1 ) denote Firm 1’s maximum total profit before (resp., after)

implementing the symbiotic system.

4.4.1 The Willingness in a Monopoly

Recall from Section 4.3.1 the optimal decisions under monopoly, obtained under the as-

sumptions max{c1,p, c
′
1,p} < αp and max{c1,s, c

′
1,s} < αs. Before implementing the symbiotic

system, Firm 1’s total profit from products P and S is:

π∗1 =
(αp − c1,p)

2

4(1 + b1)
+

(αs − c1,s)
2

4(1 + b1)
.

The total profit after implementation is:

π
′∗
1 =

θ1,p(αp − c
′
1,p)

2

4
+

(1− θ1,p)(apαp − c
′
1,p)

2

4ap

+
θ1,s(αs − c

′
1,s)

2

4
+

(1− θ1,s)(asαs − c
′
1,s)

2

4as

−K.

To capture the firm’s willingness to implement, let ∆M = π
′∗
1 − π∗1. To better understand

the impact of parametric changes, it is convenient to partition the expression for ∆M into

four terms:

∆M =
(1− θ1,p)(ap − 1)(apα

2
p − c

′2
1,p)

4ap

+
(1− θ1,s)(as − 1)(asα

2
s − c

′2
1,s)

4as︸ ︷︷ ︸
T M
1 : The gain from exploiting the green market segment

+
(c1,p − c

′
1,p)(2αp − c1,p − c

′
1,p)

4
+

(c1,s − c
′
1,s)(2αs − c1,s − c

′
1,s)

4︸ ︷︷ ︸
T M
2 : The gain/loss from the changes in the variable production costs

+
b1(αp − c1,p)

2

4(1 + b1)
+

b1(αs − c1,s)
2

4(1 + b1)︸ ︷︷ ︸
T M
3 : The gain from better usage of the waste

− K︸︷︷︸
T M
4 : The fixed cost

.

These four terms can be further categorized into two types: Demand-side and Cost-side.
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• Demand-side Influence:

TM
1 =

(1−θ1,p)(ap−1)(apα2
p−c

′2
1,p)

4ap
+

(1−θ1,s)(as−1)(asα2
s−c

′2
1,s)

4as

This represents the additional revenue for Firm 1 from providing the green variants of

the two products (instead of the regular variants) to the green consumers. Since the

green consumers have higher valuation for the green variants (relative to their regular

counterparts), this term is always non-negative. If either (i) the green consumers do

not exist (i.e., θ1,p = 1 and θ1,s = 1), or (ii) the green consumers value the green

variants the same as the regular variants (i.e., ap = 1; as = 1), then we have TM
1 = 0.

• Cost-side Influence:

1. TM
2 =

(c1,p−c
′
1,p)(2αp−c1,p−c

′
1,p)

4
+

(c1,s−c
′
1,s)(2αs−c1,s−c

′
1,s)

4

This represents the gain/loss from changes in the variable production costs. If

the production costs of both products reduce after the implementation of the

symbiotic system (i.e., c
′
1,p ≤ c1,p and c

′
1,s ≤ c1,s), then this term represents a

benefit for Firm 1. Otherwise, if both production costs increase, then the term

reflects a loss. In general, TM
2 can be either a benefit or a loss. If the variable

production costs of both products remain the same after implementation (i.e.,

c1,p = c
′
1,p and c1,s = c

′
1,s), then we have TM

2 = 0.

2. TM
3 = b1(αp−c1,p)2

4(1+b1)
+ b1(αs−c1,s)2

4(1+b1)

This represents the saving for Firm 1 in the waste treatment cost. Recall that

one benefit of implementation is the simplification in the treatment process of

the wastes of both the products. This term is always non-negative. If the waste
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treatment cost had a linear form before the implementation of the symbiotic

system (i.e., b1 = 0), then we have TM
3 = 0.

3. TM
4 = K

This is the fixed cost incurred by Firm 1 in implementing the symbiotic system.

Our interest is in gaining insights on the conditions under which ∆M ≥ 0, since this would

indicate the firm’s willingness to implement the system. The classification above implies the

following remark.

Remark 1 In a monopoly, if the combined benefit of (i) exploiting the green market segment

(TM
1 ), (ii) better usage of the waste (TM

3 ), and (iii) lowering the variable production cost

(TM
2 , if TM

2 > 0) is more than the sum of the (1) higher variable production costs (−TM
2 ,

if TM
2 < 0) and (2) fixed cost (TM

4 ), then the firm’s willingness (∆M) to implement the

symbiotic system is nonnegative.
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Figure 4.5. Willingness in a Monopoly: Influence on the Decision to Implement of the
Change in the (i) Variable Production Cost after Implementation (c

′
1,p), and (ii) Proportion

of Regular Consumers of Product P (θ1,p).
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Figure 4.5(a) illustrates Firm 1’s combined benefit and combined cost from implementation

with a change in the variable production cost after implementation (c
′
1,p), while keeping all

other parameters fixed. To allow us to focus on one product (say Product P), we assume

c1,s = c
′
1,s for simplicity. When c

′
1,p is less than the value of the variable production cost

c1,p before implementation, we have TM
2 ≥ 0. Thus, when c

′
1,p ≤ c1,p, the combined benefit

consists of three terms: TM
1 , TM

2 , and TM
3 , while the combined cost is TM

4 . When c
′
1,p > c1,p,

the term TM
2 is negative. Thus, the combined benefit now consists of only two terms: TM

1

and TM
3 , while the combined cost has two terms: −TM

2 and TM
4 . As shown in the figure, the

curve representing the combined benefit (resp., combined cost) of implementing the system

decreases (resp., increases) with an increase in c
′
1,p. The willingness measure ∆M changes

sign at the threshold production cost c̄1,p. As long as c
′
1,p is smaller than this threshold, the

combined benefit exceeds the combined cost.

In Figure 4.5(b), we illustrate the impact of the proportion of regular consumers of Product P

(θ1,p) on the firm’s decision to implement the system. Note that (i) c
′
1,p is between 0 and αp

and (ii) the value of ∆M decreases with an increase in c
′
1,p.

First, consider the (worst-case) situation when c
′
1,p is at its upper bound αp. In this case,

the gain from exploiting the green market is positive (i.e., TM
1 > 0), while the firm incurs

a loss from changes in the variable product costs (i.e., TM
2 < 0). Also, recall that the firm

gains from the better usage of the wastes of the two products (i.e., TM
3 ≥ 0). In Region I of

Figure 4.5(b), where θ1,p is less than a threshold θ1,p, the combined benefit of TM
1 and TM

3

dominates the combined loss of −TM
2 and TM

4 . Consequently, we have ∆M > 0. Since ∆M

increases with a decrease in c
′
1,p, we continue to have ∆M > 0 as c

′
1,p reduces from αp to 0.
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Next, consider the (best-case) situation when c
′
1,p is at its lower bound 0. Here, the firm

benefits from changes in the variable product costs (i.e., TM
2 > 0). Thus, the combined

benefit consists of three terms TM
1 , TM

2 , and TM
3 . However, the contribution of TM

1 decreases

with an increase in θ1,p. Therefore, in Region III of Figure 4.5(b), where θ1,p is greater than

a threshold θ1,p, the combined cost TM
4 dominates the combined benefit of TM

1 , TM
2 , and

TM
3 . Consequently, we have ∆M < 0. Again, as ∆M decreases with an increase in c

′
1,p, we

continue to have ∆M < 0 as c
′
1,p increases from 0 to αp.

In Region II, when the value of θ1,p is between the two thresholds θ1,p and θ1,p, there is a

healthier tradeoff between the combined cost and the combined benefit. For any value of

θ1,p in this region, there exists a threshold of c
′
1,p (represented by the curve) below which the

decision for implementation is in the affirmative.

In the next section, we consider the case under Model CR.

4.4.2 The Willingness under Competition for the Regular Variants

Recall the optimal decisions under competition (Section 4.3.4), obtained under the assump-

tions max{2c1,p − αp, 2c
′
1,p − αp, 0} < c2,p < min{αp+c1,p

2
,

αp+c
′
1,p

2
} and max{2c1,s − αs, 2c

′
1,s −

αs, 0} < c2,s < min{αs+c1,s

2
,

αs+c
′
1,s

2
}. Firm 1’s total profit from the two products before

implementation is:

π∗1 =
(b1 + 1)(αp − 2c1,p + c2,p)

2

(4b1 + 3)2
+

(b1 + 1)(αs − 2c1,s + c2,s)
2

(4b1 + 3)2
.

After implementation, the total profit is:
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π
′∗
1 =

θ1,p(αp − 2c
′
1,p + c2,p)

2

9
+

(1− θ1,p)(apαp − c
′
1,p)

2

4ap

+
θ1,s(αs − 2c

′
1,s + c2,s)

2

9
+

(1− θ1,s)(asαs − c
′
1,s)

2

4as

−K.

Let ∆CR = π
′∗
1 − π∗1. We partition ∆CR into five terms that can be conveniently interpreted:

∆CR = π
′∗
1 − π∗1

= (1− θ1,p)[
(apαp − 2c

′
1,p + c2,p)

2

9ap

− (αp − 2c
′
1,p + c2,p)

2

9
]

+(1− θ1,s)[
(asαs − 2c

′
1,s + c2,s)

2

9as

− (αs − 2c
′
1,s + c2,s)

2

9
]

︸ ︷︷ ︸
T R
1 : The gain from exploring the green market segment

+(1− θ1,p)[
(apαp − c

′
1,p)

2

4ap

− (apαp − 2c
′
1,p + c2,p)

2

9ap

]

+(1− θ1,s)[
(asαs − c

′
1,s)

2

4as

− (asαs − 2c
′
1,s + c2,s)

2

9as

]
︸ ︷︷ ︸

T R
2 : The benefit of being the exclusive supplier of the green market segment

+
4(c1,p − c

′
1,p)(αp − c1,p − c

′
1,p + c2,p)

9
+

4(c1,s − c
′
1,s)(αs − c1,s − c

′
1,s + c2,s)

9︸ ︷︷ ︸
T R
3 : The gain/loss from the changes in the variable production costs

+
b1(16b1 + 15)(αp − 2c1,p + c2,p)

2

9(4b1 + 3)2
+

b1(16b1 + 15)(αs − 2c1,s + c2,s)
2

9(4b1 + 3)2

︸ ︷︷ ︸
T R
4 : The gain from better usage of the waste

− K︸︷︷︸
T R
5 : The fixed cost

.

TR
1 , TR

3 , TR
4 and TR

5 have similar corresponding terms (TM
1 , TM

2 , TM
3 and TM

4 , respectively)

in the expression of ∆M in Section 4.4.1. The only term unique to ∆CR is TR
2 . We, therefore,

discuss this expression here.

TR
2 = (1− θ1,p)[

(apαp − c
′
1,p)

2

4ap

− (apαp − 2c
′
1,p + c2,p)

2

9ap

]

+(1− θ1,s)[
(asαs − c

′
1,s)

2

4as

− (asαs − 2c
′
1,s + c2,s)

2

9as

]
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This term represents the additional revenue of Firm 1 for being the exclusive supplier to

the green consumers. It can be shown that TR
2 ≥ 0, with equality holding only when green

consumers do not exist (i.e., θ1,p = 1 and θ1,s = 1). Under competition for the regular

variants, the demand-side impact is represented by TR
1 and TR

2 while the cost-side influence

is reflected in TR
3 , TR

4 , and TR
5 . This implies our next remark. The subsequent discussion

offers insights on the willingness to implement.

Remark 2 Under competition for the regular variants of the two products (Model CR), if the

combined benefit of (i) exploiting the green consumers (TR
1 ), (ii) being the exclusive supplier

of the green market segment (TR
2 ), (iii) better usage of the waste (TR

4 ), and (iv) lowering

the variable production cost (TR
3 , if TR

3 > 0) exceeds the sum of the (1) higher variable

production cost (−TR
3 , if TR

3 < 0) and (2) fixed cost (TR
5 ), then the firm’s willingness (∆CR)

to implement the symbiotic system is nonnegative.
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Figure 4.6. Willingness under Competition for Regular Variants: Influence on the Decision
to Implement of the Change in the Appreciation of the Green Variant of Product P (ap).

Figure 4.6 illustrates the impact of the appreciation ap of the green variant of Product P

on the firm’s decision to implement the system. Again, note that (i) c
′
1,p is between c

′
lb =
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max{2c2,p − αp, 0} and c
′
ub = αp+c2,p

2
and (ii) the value of ∆CR decreases with an increase

in c
′
1,p. When c

′
1,p is at its lower bound c

′
lb, the firm benefits from changes in the variable

product costs (i.e., TR
3 > 0). Thus, the combined benefit consists of four terms TR

1 , TR
2 ,

TR
3 , and TR

4 . However, the contributions of TR
1 and TR

2 are marginal when ap is close to its

lower bound 1. Therefore, in Region I of Figure 4.6, where ap is less than a threshold ap,

the cost TR
5 dominates the combined benefit of TR

1 , TR
2 , TR

3 , and TR
4 . Consequently, we have

∆CR < 0. Since ∆CR decreases with an increase in c
′
1,p, we continue to have ∆CR < 0 as

c
′
1,p increases from c

′
lb to c

′
ub. Now consider the situation when c

′
1,p is at its upper bound c

′
ub.

The firm incurs a loss from changes in the variable product costs (i.e., TR
3 < 0). However,

the contributions of TR
1 and TR

2 increase with an increase of ap. In Region III of Figure 4.6,

where ap is more than a threshold ap, the combined benefit of TR
1 , TR

2 , and TR
4 dominates the

combined loss of −TR
3 and TR

5 . Consequently, we have ∆CR > 0 and (since ∆CR > 0 increases

as c
′
1,p reduces) this continues to hold as c

′
1,p reduces from c

′
ub to c

′
lb. As in Figure 4.6, in the

intermediate region (Region II), where the value of ap is between the two thresholds ap and

ap, there exists a threshold of c
′
1,p (represented by the curve) below which the willingness to

implement the symbiotic system is positive.

When competitors can produce both regular and green variants (Model CG), the behavior

of the the firm’s willingness to implement the symbiotic system can be analyzed in a similar

manner. We, therefore, avoid providing a detailed description here and briefly list the main

change in the expression of the willingness ∆CG under Model CG over ∆CR.

In the willingness under Model CG, there exists an additional term reflecting the access to

the green market. Before implementation of the system, under Model CR, both Firm 1 and
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Firm 2 provide the regular variant. Since the green variant is unavailable, Firm 1 provides the

regular variant to the entire market which includes the dedicated green consumers. Under

Model CG, Firm 2 produces the green variant. Since the dedicated green consumers only

purchase the green variant, Firm 1 cannot access the green market before the implementation.

After implementation, under Model CR, Firm 1 exclusively supplies the green variant to

the green consumers. Under Model CG, Firm 1 gains access to the green market after

implementation.

In the next section, our aim is to investigate how a change in the nature of competition

affects the firm’s willingness to implement the symbiotic system.

4.4.3 A Comparative Look at the Shift in Willingness under Competition

We first summarize Firm 1’s willingness to implement the symbiotic system under Models M,

CR, and CG, in the following table.

Table 4.6. Willingness to Implement the Symbiotic System Under Monopoly, Competition
for the Regular Variant, and Competition for Both Regular and Green Variants.

∆M

θ1,p(αp−c
′
1,p)2

4
+

(1−θ1,p)(apαp−c
′
1,p)2

4ap
− (αp−c1,p)2

4(1+b1)

+
θ1,s(αs−c

′
1,s)

2

4
+

(1−θ1,s)(asαs−c
′
1,s)

2

4as
− (αs−c1,s)2

4(1+b1)
−K

∆CR

θ1,p(αp−2c
′
1,p+c2,p)2

9
+

(1−θ1,p)(apαp−c
′
1,p)2

4ap
− (b1+1)(αp−2c1,p+c2,p)2

(4b1+3)2

+
θ1,s(αs−2c

′
1,s+c2,s)2

9
+

(1−θ1,s)(asαs−c
′
1,s)

2

4as
− (b1+1)(αs−2c1,s+c2,s)2

(4b1+3)2
−K

∆CG

θ1,p(αp−2c
′
1,p+c2,p)2

9
+

(1−θ1,p)(apαp−2c
′
1,p+c2,p)2

9ap
− θ1,p(b1θ1,p+1)(αp−2c1,p+c2,p)2

(4b1θ1,p+3)2

+
θ1,s(αs−2c

′
1,s+c2,s)2

9
+

(1−θ1,s)(asαs−2c
′
1,s+c2,s)2

9as
− θ1,s(b1θ1,s+1)(αs−2c1,s+c2,s)2

(4b1θ1,s+3)2
−K

In general, with the introduction of competition, Firm 1 produces less quantities of the two

products and earns less profit. Competition also hurts Firm 1’s market share. For example,
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if the competitor produces the green variant, then Firm 1 shares the green market after the

implementation of the symbiotic system. Since one of the benefits of the implementation is

to exploit the green market, competition reduces this benefit. Thus, an intuitive projection

would be that Firm 1 would be less willing to implement the system under competition than

under monopoly. A natural question arises: Can the firm’s willingness to implement the

symbiotic system increase under competition, relative to that under a monopoly? In Theo-

rems 4.4.1, 4.4.3, and 4.4.5 and their corresponding corollaries, our effort is to (1) identify and

interpret scenarios where competition results in an increase in willingness and (2) understand

the relative impact of the nature of the competition.

Theorem 4.4.1 If c
′
1,p = c1,p, c

′
1,s = c1,s, 0 ≤ θ1,p ≤ 1

b1+1
, and 0 ≤ θ1,s ≤ 1

b1+1
, then we have

∆CR ≥ ∆M .

Proof: If c
′
1,p = c1,p and c

′
1,s = c1,s, then we have

∆M −∆CR

=
(αp − c1,p)

2

4
(θ1,p − 1

b1 + 1
)− (αp − 2c1,p + c2,p)

2

9
[θ1,p − 9(b1 + 1)

(4b1 + 3)2
]

+
(αs − c1,s)

2

4
(θ1,s − 1

b1 + 1
)− (αs − 2c

′
1,s + c2,s)

2

9
[θ1,s − 9(b1 + 1)

(4b1 + 3)2
]

= [
(αp − c1,p)

2

4
− (αp − 2c1,p + c2,p)

2

9
](θ1,p − 1

b1 + 1
)

+[
(αs − c1,s)

2

4
− (αs − 2c1,s + c2,s)

2

9
](θ1,s − 1

b1 + 1
)

−b1(7b1 + 6)(αp − 2c1,p + c2,p)
2

9(b1 + 1)(4b1 + 3)2
− b1(7b1 + 6)(αs − 2c1,s + c2,s)

2

9(b1 + 1)(4b1 + 3)2

Since (αp−c1,p)

2
− (αp−2c1,p+c2,p)

3
= (αp+c1,p−2c2,p)

6
> 0, we have

(αp − c1,p)
2

4
− (αp − 2c1,p + c2,p)

2

9
> 0.
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Similarly, we have

(αs − c1,s)
2

4
− (αs − 2c1,s + c2,s)

2

9
> 0.

Also, b1(7b1+6)(αp−2c1,p+c2,p)2

9(b1+1)(4b1+3)2
≥ 0, and b1(7b1+6)(αs−2c1,s+c2,s)2

9(b1+1)(4b1+3)2
≥ 0. Thus, if θ1,p − 1

b1+1
≤ 0 and

θ1,s − 1
b1+1

≤ 0, then ∆M ≤ ∆CR.

Corollary 4.4.2 If Firm 1’s variable production costs of both products remain the same

after the implementation of the symbiotic system, and the proportions of green consumers

in both products’ markets are more than a threshold, then competing with firms who only

produce regular variants encourages the firm to implement the symbiotic system.

Theorem 4.4.3 If c
′
1,p = c1,p, c

′
1,s = c1,s, and b1 = 0, then

(i) If ap = 1 and as = 1, we have ∆CG ≥ ∆M .

(ii) If c2,p ≤ c1,p, c2,s ≤ c1,s, ap ≥ 9
5
, and as ≥ 9

5
, we have ∆CG ≤ ∆M .

Proof: If c
′
1,p = c1,p, c

′
1,s = c1,s, and b1 = 0, then

∆CG −∆M

=
(1− θ1,p)(apαp − 2c1,p + c2,p)

2

9ap

+
(1− θ1,p)(αp − c1,p)

2

4
− (1− θ1,p)(apαp − c1,p)

2

4ap

+
(1− θ1,s)(asαs − 2c1,s + c2,s)

2

9as

+
(1− θ1,s)(αs − c1,s)

2

4
− (1− θ1,s)(asαs − c1,s)

2

4as

(i) If ap = 1 and as = 1, then

∆CG −∆M =
(1− θ1,p)(αp − 2c1,p + c2,p)

2

9
+

(1− θ1,s)(αs − 2c1,s + c2,s)
2

9
≥ 0.
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ii) If c2,p ≤ c1,p and c2,s ≤ c1,s, then

∆CG −∆M

≤ (1− θ1,p)(apαp − c1,p)
2

9ap

+
(1− θ1,p)(αp − c1,p)

2

4
− (1− θ1,p)(apαp − c1,p)

2

4ap

+
(1− θ1,s)(asαs − c1,s)

2

9as

+
(1− θ1,s)(αs − c1,s)

2

4
− (1− θ1,s)(asαs − c1,s)

2

4as

=
(1− θ1,p)

36ap

[(−5a2
p + 9ap)α

2
p − 8apαpc1,p + (9ap − 5)c2

1,p]

+
(1− θ1,s)

36as

[(−5a2
s + 9as)α

2
s − 8asαsc1,s + (9as − 5)c2

1,s]

If ap ≥ 9
5
, then (−5a2

p + 9ap) ≤ 0. Since αp > c1,p, we have

(1− θ1,p)

36ap

[(−5a2
p + 9ap)α

2
p − 8apαpc1,p + (9ap − 5)c2

1,p]

≤ (1− θ1,p)

36ap

[(−5a2
p + 9ap)c

2
1,p − 8apc

2
1,p + (9ap − 5)c2

1,p]

=
−5(1− θ1,p)(ap − 1)2c2

1,p

36ap

≤ 0.

Similarly, we have (1−θ1,s)

36as
[(−5a2

s + 9as)α
2
s − 8asαsc1,s + (9as − 5)c2

1,s] ≤ 0. Therefore,

we have ∆CG ≤ ∆M .

Corollary 4.4.4 If the implementation of the symbiotic system does not change the variable

production costs of both products, and the savings on the waste treatment cost are negligible,

then

(1) Even if the dedicated green consumers’ appreciation for the green variants is marginal,

the firm is more willing (than in a monopoly) to implement the symbiotic system when

competing with firms who produce green variants.
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(2) Even if the dedicated green consumers’ appreciation for the green variants is higher

than a threshold, competing with firms who produce green variants discourages the firm

to implement the symbiotic system if the competitors have cost advantages over Firm 1

for both products.

Theorem 4.4.5 If b1 = 0, c2,p ≤ c1,p = c
′
1,p, and c2,s ≤ c1,s = c

′
1,s, then ∆CG < ∆CR.

Proof: If b1 = 0, c
′
1,p = c1,p, and c

′
1,s = c1,s, then we have

∆CG −∆CR

= (1− θ1,p)[
(apαp − 2c1,p + c2,p)

2

9ap

− (apαp − c1,p)
2

4ap

+
(αp − 2c1,p + c2,p)

2

9
]

+(1− θ1,s)[
(asαs − 2c1,s + c2,s)

2

9as

− (asαs − c1,s)
2

4as

+
(αs − 2c1,s + c2,s)

2

9
]

Since
∂

(apαp−2c1,p+c2,p)2

9ap

∂ap
= (apαp−2c1,p+c2,p)(apαp+2c1,p−c2,p)

9a2
p

> 0, the quantity (apαp−2c1,p+c2,p)2

9ap
in-

creases with an increase in ap. Thus, for ap ≥ 1, we have (apαp−2c1,p+c2,p)2

9ap
≥ (αp−2c1,p+c2,p)2

9
.

Therefore,

(apαp − 2c1,p + c2,p)
2

9ap

− (apαp − c1,p)
2

4ap

+
(αp − 2c1,p + c2,p)

2

9

≤ 2(apαp − 2c1,p + c2,p)
2

9ap

− (apαp − c1,p)
2

4ap

.

Since c2,p ≤ c1,p, we have

2(apαp − 2c1,p + c2,p)
2

9ap

− (apαp − c1,p)
2

4ap

≤ 2(apαp − c1,p)
2

9ap

− (apαp − c1,p)
2

4ap

=
−(apαp − c1,p)

2

36ap

< 0.

Similarly, (asαs−2c1,s+c2,s)2

9as
− (asαs−c1,s)2

4as
+ (αs−2c1,s+c2,s)2

9
< 0. Thus, we have ∆CG < ∆CR.
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Corollary 4.4.6 If we suppress (i) the savings in the waste treatment cost and (ii) the

savings in the variable production costs of both products, and assume that competitors have

cost advantages over Firm 1 for both products, then Firm 1 is more willing to implement

the symbiotic system when competitors can only produce regular variants as compared to the

situation when competitors produce green variants.

4.4.4 Simultaneously Benefiting the Firm and Its Consumers

It is important to note that our comparison of willingness in Section 4.4.3 across the different

settings was purely a relative one. In other words, we did not impose that the value of

willingness be non-negative. Clearly, one desirable outcome in support of implementation

would be that the willingness be positive. Furthermore, the motivation for implementing

the system is higher if consumers (as a whole) benefit from it. In this section, our goal is to

identify situations under which the above two conditions are simultaneously satisfied. We

need the following additional notation.

Notation:

W b
i Consumer welfare before the implementation of symbiotic system under Model i,

i ∈ {CR,CG}.
W a

i Consumer welfare after the implementation of symbiotic system under Model i,
i ∈ {CR,CG}.

pb
i,j Market price of variant i of Product j before the implementation of symbiotic

system, i ∈ {r, g}, r (resp., g) represents regular (resp., green); j ∈ {p, s}.
pa

i,j Market price of variant i of Product j after the implementation of symbiotic
system, i ∈ {r, g}, r (resp., g) represents regular (resp., green); j ∈ {p, s}.

We first consider competition only for the regular variants (Model CR). The equilibrium

prices and production quantities for both the variants of a product (say, Product P) are

listed in Table 4.7.
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Table 4.7. Equilibrium Results under Competition for Regular Variants, both Before and
After the Implementation of the Symbiotic System. Here, q∗i is the Total Production Quantity
of Firm i; i = 1, 2.

Model Before Implementation After Implementation
CR Regular Variant Regular Variant Green Variant

p∗ (2b1+1)α+c1+(2b1+1)c2
4b1+3

α+c
′
1+c2
3

aα+c
′
1

2

q∗ = q∗1 + q∗2
(2b1+2)α−c1−(2b1+1)c2

4b1+3

θ1(2α−c
′
1−c2)

3

(1−θ1)(aα−c
′
1)

2a

Recall from Section 4.2 that consumers’ valuation of the regular variant is uniformly dis-

tributed between 0 and α with density 1. Therefore, we have

W b
CR =

∫ αp

pb
r,p

[1(vp − pb
r,p)] dvp +

∫ αs

pb
r,s

[1(vs − pb
r,s)] dvs =

(αp − pb
r,p)

2

2
+

(αs − pb
r,s)

2

2

=
[(2b1 + 2)αp − c1,p − (2b1 + 1)c2,p]

2

2(4b1 + 3)2
+

[(2b1 + 2)αs − c1,s − (2b1 + 1)c2,s]
2

2(4b1 + 3)2
.

Similarly, we have

W a
CR =

∫ αp

pa
r,p

[θ1,p(vp − pa
r,p)] dvp +

∫ αp

pa
g,p
ap

[(1− θ1,p)(apvp − pa
g,p)] dvp

+

∫ αs

pa
r,s

[θ1,s(vs − pa
r,s)] dvs +

∫ αs

pa
g,s
as

[(1− θ1,s)(asvs − pa
g,s)] dvs

=
θ1,p(αp − pa

r,p)
2

2
+

(1− θ1,p)(apαp − pa
g,p)

2

2ap

+
θ1,s(αs − pa

r,s)
2

2
+

(1− θ1,s)(asαs − pa
g,s)

2

2as

=
θ1,p(2αp − c

′
1,p − c2,p)

2

18
+

(1− θ1,p)(apαp − c
′
1,p)

2

8ap

+
θ1,s(2αs − c

′
1,s − c2,s)

2

18
+

(1− θ1,s)(asαs − c
′
1,s)

2

8as

.

The following result identifies conditions under which consumer welfare improves after the

implementation of the system.
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Theorem 4.4.7 If ap ≥ 2, as ≥ 2, c
′
1,p ≤ c1,p, and c

′
1,s ≤ c1,s, then we have W a

CR > W b
CR.

Proof: Since
∂

(1−θ1,p)(apαp−c
′
1,p)2

8ap

∂ap
=

(1−θ1,p)(apαp−c
′
1,p)(apαp+c

′
1,p)

8a2
p

> 0, the quantity
(1−θ1,p)(apαp−c

′
1,p)2

8ap

increases with an increase in ap. Thus, for ap ≥ 2, we have

(1− θ1,p)(apαp − c
′
1,p)

2

8ap

≥ (1− θ1,p)(2αp − c
′
1,p)

2

16

>
(1− θ1,p)(2αp − c

′
1,p − c2,p)

2

18
.

Therefore,

θ1,p(2αp − c
′
1,p − c2,p)

2

18
+

(1− θ1,p)(apαp − c
′
1,p)

2

8ap

>
θ1,p(2αp − c

′
1,p − c2,p)

2

18
+

(1− θ1,p)(2αp − c
′
1,p − c2,p)

2

18
=

(2αp − c
′
1,p − c2,p)

2

18
.

Next, we show [(2b1+2)αp−c1,p−(2b1+1)c2,p]2

2(4b1+3)2
reaches its maximum at b1 = 0.

[2αp − c1,p − 2c2,p]
2

18
− [(2b1 + 2)αp − c1,p − (2b1 + 1)c2,p]

2

2(4b1 + 3)2

=
1

18(4b1 + 3)2
{[(4b1 + 3)(2αp − c1,p − c2,p)]

2 − [3(2b1 + 2)αp − 3c1,p − 3(2b1 + 1)c2,p]
2}

=
2b1(αp − 2c1,p + c2,p)

18(4b1 + 3)2
[(14b1 + 12)αp − (4b1 + 6)c1,p − (10b1 + 6)c2,p] ≥ 0.

Since c
′
1,p ≤ c1,p, we have

[(2b1 + 2)αp − c1,p − (2b1 + 1)c2,p]
2

2(4b1 + 3)2
≤ (2αp − c1,p − 2c2,p)

2

18
≤ (2αp − c

′
1,p − 2c2,p)

2

18
.

Therefore,

θ1,p(2αp − c
′
1,p − c2,p)

2

18
+

(1− θ1,p)(apαp − c
′
1,p)

2

8ap

>
[(2b1 + 2)αp − c1,p − (2b1 + 1)c2,p]

2

2(4b1 + 3)2
.

Similarly,

θ1,s(2αs − c
′
1,s − c2,s)

2

18
+

(1− θ1,s)(asαs − c
′
1,s)

2

8as

>
[(2b1 + 2)αs − c1,s − (2b1 + 1)c2,s]

2

2(4b1 + 3)2
.

Thus, we have W a
CR > W b

CR.
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Corollary 4.4.8 When Firm 1 competes with firms who only produce regular variants, if the

green consumers’ appreciation for the green variant is relatively high, and the implementation

of the symbiotic system does not increase the variable production costs of both products, then

consumer welfare increases after the implementation.

The result in Theorem 4.4.7 can be used to identify a special case in which both Firm 1 and

consumers benefit from the implementation of the symbiotic system.

Theorem 4.4.9 If ap ≥ 2, as ≥ 2, c
′
1,p ≤ c1,p, c

′
1,s ≤ c1,s, and K ≤ (1−θ1,p)

8
[(2αp − c1,p)

2 −

(αp − 2c1,p + c2,p)
2] + (1−θ1,s)

8
[(2αs − c1,s)

2 − (αs − 2c1,s + c2,s)
2], then we have W a

CR > W b
CR

and ∆CR > 0.

Proof: Since ap ≥ 2, as ≥ 2, c
′
1,p ≤ c1,p, and c

′
1,s ≤ c1,s, we have W a

CR > W b
CR from

Theorem 4.4.7.

By using an approach similar to that in the proof of Theorem 12, we can show the following

two properties:

(i) (b1+1)(αp−2c1,p+c2,p)2

(4b1+3)2
reaches its maximum when b1 = 0,

(ii)
(1−θ1,p)(apαp−c

′
1,p)2

4ap
increases with an increase in ap.

Thus, for ap ≥ 2, we have

(1− θ1,p)(apαp − c
′
1,p)

2

4ap

≥ (1− θ1,p)(2αp − c1,p)
2

8
,

(b1 + 1)(αp − 2c1,p + c2,p)
2

(4b1 + 3)2
≤ (αp − 2c1,p + c2,p)

2

9
.
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Thus,

θ1,p(αp − 2c1,p + c2,p)
2

9
+

(1− θ1,p)(apαp − c
′
1,p)

2

4ap

− (b1 + 1)(αp − 2c1,p + c2,p)
2

(4b1 + 3)2

≥ θ1,p(αp − 2c1,p + c2,p)
2

9
+

(1− θ1,p)(2αp − c1,p)
2

8
− (αp − 2c1,p + c2,p)

2

9

=
(1− θ1,p)(2αp − c1,p)

2

8
− (1− θ1,p)(αp − 2c1,p + c2,p)

2

9

≥ (1− θ1,p)(2αp − c1,p)
2

8
− (1− θ1,p)(αp − 2c1,p + c2,p)

2

8

=
(1− θ1,p)

8
[(2αp − c1,p)

2 − (αp − 2c1,p + c2,p)
2]

=
(1− θ1,p)

8
[(αp + c1,p − c2,p)(3αp − 3c1,p + c2,p)] > 0.

Similarly, we have

θ1,s(αs − 2c1,s + c2,s)
2

9
+

(1− θ1,s)(asαs − c
′
1,s)

2

4as

− (b1 + 1)(αs − 2c1,s + c2,s)
2

(4b1 + 3)2

≥ (1− θ1,s)

8
[(2αs − c1,s)

2 − (αs − 2c1,s + c2,s)
2].

Thus, if K ≤ (1−θ1,p)

8
[(2αp−c1,p)

2−(αp−2c1,p+c2,p)
2]+ (1−θ1,s)

8
[(2αs−c1,s)

2−(αs−2c1,s+c2,s)
2],

then we have ∆CR > 0. The result follows.

Corollary 4.4.10 If (i) green consumers’ appreciation of the green variant is relatively high,

(ii) the implementation of the symbiotic system reduces the variable production costs of both

products, and (iii) the fixed cost of implementation of the symbiotic system is modest, then

the willingness of Firm 1 to implement the symbiotic system under competition for the regular

variants is positive. Also, consumer welfare increases after the implementation.

To extend the line of thought in Theorem 4.4.9, note that a further motivation for imple-

mentation occurs when the willingness of Firm 1 in a monopoly is negative. The following

result illustrates one such situation.
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Theorem 4.4.11 If ap = 2, as = 2, c2,p ≤ c1,p = c
′
1,p, c2,s ≤ c1,s = c

′
1,s, b1 = 0, and

K = (1−θ1,p)

8
[(2αp − c1,p)

2 − (αp − 2c1,p + c2,p)
2] + (1−θ1,s)

8
[(2αs − c1,s)

2 − (αs − 2c1,s + c2,s)
2],

then we have W a
CR > W b

CR, ∆M < 0, and ∆CR > 0.

Proof: From Theorem 4.4.9, we have W a
CR > W b

CR and ∆CR > 0. Since ap = 2, as = 2,

c
′
1,p = c1,p, c

′
1,s = c1,s, b1 = 0, we have

∆M =
θ1,p(αp − c

′
1,p)

2

4
+

(1− θ1,p)(apαp − c
′
1,p)

2

4ap

− (αp − c1,p)
2

4(1 + b1)

+
θ1,s(αs − c

′
1,s)

2

4
+

(1− θ1,s)(asαs − c
′
1,s)

2

4as

− (αs − c1,s)
2

4(1 + b1)
−K

=
θ1,p(αp − c1,p)

2

4
+

(1− θ1,p)(2αp − c1,p)
2

8
− (αp − c1,p)

2

4

+
θ1,s(αs − c1,s)

2

4
+

(1− θ1,s)(2αs − c1,s)
2

8
− (αs − c1,s)

2

4
−K

=
(1− θ1,p)[(2αp − c1,p)

2 − 2(αp − c1,p)
2]

8
+

(1− θ1,s)[(2αs − c1,s)
2 − 2(αs − 2c1,s)

2]

8
−K.

Using K = (1−θ1,p)

8
[(2αp−c1,p)

2−(αp−2c1,p+c2,p)
2]+ (1−θ1,s)

8
[(2αs−c1,s)

2−(αs−2c1,s+c2,s)
2], we

get ∆M = (1−θ1,p)

8
[(αp−2c1,p+c2,p)

2−2(αp−c1,p)
2]+ (1−θ1,s)

8
[(αs−2c1,s+c2,s)

2−2(αs−2c1,s)
2].

Also, c2,p ≤ c1,p, c2,s ≤ c1,s. Therefore,

∆M =
(1− θ1,p)

8
[(αp − 2c1,p + c2,p)

2 − 2(αp − c1,p)
2]

+
(1− θ1,s)

8
[(αs − 2c1,s + c2,s)

2 − 2(αs − 2c1,s)
2]

<
(1− θ1,p)

8
[(αp − 2c1,p + c2,p)

2 − (αp − c1,p)
2]

+
(1− θ1,s)

8
[(αs − 2c1,s + c2,s)

2 − (αs − 2c1,s)
2]

=
(1− θ1,p)(c2,p − c1,p)

8
[(αp − 2c1,p + c2,p) + (αp − c1,p)]

+
(1− θ1,s)(c2,s − c1,s)

8
[(αs − 2c1,s + c2,s) + (αs − 2c1,s)] ≤ 0.

The result follows.
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Corollary 4.4.12 If (1) green consumers appreciate the green variant about two times the

regular variant, (2) implementation of the symbiotic system does not change the variable

production costs of both products, (3) competitors have a cost advantage over Firm 1, (4)

savings in the waste treatment cost are negligible, and (5) the fixed cost of implementation of

the symbiotic system is modest, then (i) willingness of Firm 1 to implement is negative in a

monopoly, but positive under competition for the regular variants and (ii) consumer welfare

increases after the implementation.

a b
CR CRW >W

CR > 0∆ 0M∆ <

1A

2A

3A
4A

7A5A
6A

Figure 4.7. A Pictorial Representation of the Conditions in Theorems 4.4.7, 4.4.9, and 4.4.11.

The nested relationships among the results in Theorems 4.4.7, 4.4.9, and 4.4.11, are illus-

trated in Figure 4.7. The conditions under which W a
CR > W b

CR are represented by the region

A1∪A2∪A3∪A4; one such condition forms the premise of Theorem 4.4.7. Similarly, the con-

ditions under which ∆CR > 0 (resp., ∆M < 0) are represented by the region A2∪A3∪A5∪A6

(resp., A3∪A4∪A6∪A7). Thus, the condition assumed in Theorem 4.4.9 belongs to A2∪A3,

while that in Theorem 4.4.11 belongs to Region A3.
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Next, consider competition for both regular and green variants (Model CG). The equilibrium

prices and production quantities for both the variants of a product (say, Product P) are listed

in Table 4.8.

Table 4.8. Equilibrium Results under Competition for both Regular and Green Variants,
both before and after the Implementation of the Symbiotic System.

Model Before Implementation After Implementation
CG Regular Variant Green Variant Regular Variant Green Variant

p∗ (2b1θ1+1)α+c1+(2b1θ1+1)c2
3+4b1θ1

aα+c2
2

α+c
′
1+c2
3

aα+c
′
1+c2

3

q∗1 + q∗2
θ1[(2b1θ1+2)α−c1−(2b1θ1+1)c2]

3+4b1θ1

(1−θ1)(aα−c2)
2a

θ1(2α−c
′
1−c2)

3

(1−θ1)(2aα−c
′
1−c2)

3a

We first derive consumer surplus before and after the implementation of a symbiotic system.

W b
CG =

θ1,p(αp − pb
r,p)

2

2
+

(1− θ1,p)(apαp − pb
g,p)

2

2ap

+
θ1,s(αs − pb

r,s)
2

2
+

(1− θ1,s)(asαs − pb
g,s)

2

2as

,

W a
CG =

θ1,p(αp − pa
r,p)

2

2
+

(1− θ1,p)(apαp − pa
g,p)

2

2ap

+
θ1,s(αs − pa

r,s)
2

2
+

(1− θ1,s)(asαs − pa
g,s)

2

2as

.

As with Model CR, our effort here is to identify conditions that benefit both Firm 1 and

consumers. Theorem 4.4.13 is used to establish Theorem 4.4.15, which identifies such con-

ditions.

Theorem 4.4.13 If c
′
1,p ≤ c1,p and c

′
1,s ≤ c1,s, then we have W a

CG > W b
CG.

Proof: The consumer welfare before and after the implementation are:

W b
CR =

θ1,p(αp − pb
r,p)

2

2
+

(1− θ1,p)(apαp − pb
g,p)

2

2ap

+
θ1,s(αs − pb

r,s)
2

2
+

(1− θ1,s)(asαs − pb
g,s)

2

2as

.
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W a
CR =

θ1,p(αp − pa
r,p)

2

2
+

(1− θ1,p)(apαp − pa
g,p)

2

2ap

+
θ1,s(αs − pa

r,s)
2

2
+

(1− θ1,s)(asαs − pa
g,s)

2

2as

.

Thus, if we can show pb
r,p ≥ pa

r,p, pb
g,p ≥ pa

g,p, pb
r,s ≥ pa

r,s, and pb
g,s ≥ pa

g,s, then we have

W a
CG > W b

CG. We first compare the prices of the regular variants of Product P before and

after the implementation.

pb
r,p − pa

r,p =
(2b1θ1,p + 1)αp + c1,p + (2b1θ1,p + 1)c2,p

3 + 4b1θ1,p

− αp + c
′
1,p + c2,p

3

=
2b1θ1,pαp + 3c1,p − (3 + 4b1θ1,p)c

′
1,p + 2b1θ1,pc2,p

3(3 + 4b1θ1,p)
.

Since c
′
1,p ≤ c1,p, we have

pb
r,p − pa

r,p ≥ 2b1θ1,pαp + 3c1,p − (3 + 4b1θ1,p)c1,p + 2b1θ1,pc2,p

3(3 + 4b1θ1,p)

=
2b1θ1,p(αp − 2c1,p + c2,p)

3(3 + 4b1θ1,p)
≥ 0.

Next, we compare the prices of the green variants of Product P before and after the imple-

mentation. pb
g,p − pa

g,p = apαp+c2,p

2
− apαp+c

′
1,p+c2,p

3
=

apαp−2c
′
1,p+c2,p

6
≥ 0.

Similarly, for Product S, we have pb
r,s ≥ pa

r,s and pb
g,s ≥ pa

g,s. Thus, W a
CG > W b

CG.

Corollary 4.4.14 When competitors produce both regular and green variants, if the imple-

mentation of the symbiotic system reduces the variable production costs of both products, then

consumer welfare increases after the implementation.

Theorem 4.4.15 If K ≤ (1−θ1,p)(apαp−2c
′
1,p+c2,p)2

9ap
+

(1−θ1,s)(asαs−2c
′
1,s+c2,s)2

9as
, c

′
1,p ≤ c1,p, and

c
′
1,s ≤ c1,s, then we have W a

CG > W b
CG and ∆CG > 0.
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Proof: From Theorem 4.4.13, we have W a
CG > W b

CG. Using an approach similar to that in

the proof of Theorem 4.4.9, we can establish the following two properties:

(i) θ1,p(b1θ1,p+1)(αp−2c1,p+c2,p)2

(4b1θ1,p+3)2
reaches its maximum at b1 = 0,

(ii)
(1−θ1,p)(apαp−2c

′
1,p+c2,p)2

9ap
increases with an increase in ap.

Then, for ap ≥ 1, c
′
1,p ≤ c1,p, we have

θ1,p(αp − 2c
′
1,p + c2,p)

2

9
+

(1− θ1,p)(apαp − 2c
′
1,p + c2,p)

2

9ap

−θ1,p(b1θ1,p + 1)(αp − 2c1,p + c2,p)
2

(4b1θ1,p + 3)2

≥ θ1,p(αp − 2c
′
1,p + c2,p)

2

9
+

(1− θ1,p)(αp − 2c
′
1,p + c2,p)

2

9
− θ1,p(αp − 2c1,p + c2,p)

2

9

≥ θ1,p(αp − 2c1,p + c2,p)
2

9
+

(1− θ1,p)(αp − 2c1,p + c2,p)
2

9
− θ1,p(αp − 2c1,p + c2,p)

2

9

=
(1− θ1,p)(αp − 2c1,p + c2,p)

2

9
> 0.

Similarly, we have

θ1,s(αs − 2c
′
1,s + c2,s)

2

9
+

(1− θ1,s)(asαs − 2c
′
1,s + c2,s)

2

9as

−θ1,s(b1θ1,s + 1)(αs − 2c1,s + c2,s)
2

(4b1θ1,s + 3)2
≥ (1− θ1,s)(αs − 2c1,s + c2,s)

2

9
.

Thus,

∆CG =
θ1,p(αp − 2c

′
1,p + c2,p)

2

9
+

(1− θ1,p)(apαp − 2c
′
1,p + c2,p)

2

9ap

−θ1,p(b1θ1,p + 1)(αp − 2c1,p + c2,p)
2

(4b1θ1,p + 3)2
+

θ1,s(αs − 2c
′
1,s + c2,s)

2

9

+
(1− θ1,s)(asαs − 2c

′
1,s + c2,s)

2

9as

− θ1,s(b1θ1,s + 1)(αs − 2c1,s + c2,s)
2

(4b1θ1,s + 3)2
−K

≥ (1− θ1,p)(αp − 2c1,p + c2,p)
2

9
+

(1− θ1,s)(αs − 2c1,s + c2,s)
2

9

−K.
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Therefore, if K ≤ (1−θ1,p)(αp−2c1,p+c2,p)2

9
+ (1−θ1,s)(αs−2c1,s+c2,s)2

9
, then we have ∆CG > 0. The

result follows.

Corollary 4.4.16 If (i) the implementation of the symbiotic system reduces the variable

production costs of both products and (ii) the fixed cost of implementation of the symbiotic

system is modest, then the willingness of Firm 1 to implement the symbiotic system under

competition for both regular and green variants is positive. Also, consumer welfare increases

after the implementation.

The following result extends Theorem 4.4.15 by further requiring that the willingness of

implementation in a monopoly be negative.

Theorem 4.4.17 If ap = 1, as = 1, c
′
1,p = c1,p, c

′
1,s = c1,s, b1 = 0, and (1−θ1,p)(αp−2c1,p+c2,p)2

9

+ (1−θ1,s)(αs−2c1,s+c2,s)2

9
≥ K > 0, then we have W a

CG > W b
CG and ∆CG > 0 > ∆M .

Proof: Since c
′
1,p ≤ c1,p, c

′
1,s ≤ c1,s, and K ≤ (1−θ1,p)(αp−2c1,p+c2,p)2

9
+ (1−θ1,s)(αs−2c1,s+c2,s)2

9
,

then from Theorem 4.4.15, we have W a
CG > W b

CG and ∆CG > 0. If ap = 1, as = 1, c
′
1,p = c1,p,

c
′
1,s = c1,s, b1 = 0, we have

∆M =
θ1,p(αp − c

′
1,p)

2

4
+

(1− θ1,p)(apαp − c
′
1,p)

2

4ap

− (αp − c1,p)
2

4(1 + b1)

+
θ1,s(αs − c

′
1,s)

2

4
+

(1− θ1,s)(asαs − c
′
1,s)

2

4as

− (αs − c1,s)
2

4(1 + b1)
−K

=
θ1,p(αp − c1,p)

2

4
+

(1− θ1,p)(αp − c1,p)
2

4
− (αp − c1,p)

2

4

+
θ1,s(αs − c1,s)

2

4
+

(1− θ1,s)(αs − c1,s)
2

4
− (αs − c1,s)

2

4
−K

= −K.

Thus, for any K > 0, we have ∆M < 0. The result follows.
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Corollary 4.4.18 If (i) the green consumers’ appreciation for the green variant is negligible,

(ii) the implementation of the symbiotic system does not change the variable production

costs of both products, and (iii) the savings in the waste treatment costs are negligible, then

Firm 1 is more willing to implement the symbiotic system under the competition with firms

who produce both regular and green variants. The consumer welfare also increases after the

implementation.

To summarize, Theorems 4.4.7–4.4.17 and Corollaries 4.4.8–4.4.18 together, suggest that

competition for either the regular variant or both regular and green variants can indeed shift

a firm’s willingness from negative to positive, and improve consumer welfare as well. This

perhaps explains the timing of SPB’s decision to implement the paper-sugar complex (see

Section 4.1.1).

4.5 Directions for Future Work

Going back to the real-world implementation described in Section 4.1.1, the unique symbiotic

model followed by SPB has transformed the livelihood of the local farming community and

has provided a reliable supply of raw material for both SPB and Ponni Sugars. The rain

shadow region around the paper-sugar complex has witnessed a green revolution, through

the irrigation of more than 1500 acres of dry and fallow land with treated effluent. For the

government, the positive societal impact of this implementation provides an ideal case study

to identify and incentivize similar symbiotic systems. Some examples of possible incentives

structures that can be studied include (1) providing a one-time subsidy, (2) providing long-

term tax relief, (3) subsidizing the supply of electricity and water, and (4) improving societal
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consciousness of symbiotic initiatives. To cite an instance, the recycling facilities established

through the Eco-Town Program in Kawasakia, Japan, received an average investment subsidy

of 48% from the government (Van Berkel et al. 2009).

In the models analyzed in this paper, we considered two products that are symbiotically con-

nected. A much-larger example of Burnside Industrial Park, which involves about 1300 busi-

nesses, is described in Noronha (1999). The businesses within the industrial park are involved

in (1) scavenger roles (reuse, remanufacture, refurbish, repair and recover), (2) decomposer

roles (recycling), (3) producing/selling environment-friendly products, and (4) providing en-

vironmental management services. These companies deal in a diverse range of materials and

have established complex relationships within the park. This example motivates the notion

of Design for Symbiosis: problems of designing the layout of a symbiotic system, coordinating

the material exchanges between the firms, and scheduling the logistics activities.

For the two-product symbiotic system analyzed in this paper, we assumed that the produc-

tion decisions of both the products are taken by a common firm interested in maximizing its

total profit. Under this centralized setting, even if the implementation of the system hurts

the profit from one product, the firm may be willing to implement if total profit improves.

Once the system is implemented, the complete exchange of wastes between the two produc-

tion processes is guaranteed. However, if the products are manufactured by two independent

firms, then participation in a symbiotic relationship becomes voluntary. Thus, in a decen-

tralized setting, the problem of pricing the wastes becomes relevant. On the one hand, if

the price of one type of waste is too low, then the firm that generates the waste may be less

willing to supply it to the other firm (that uses this waste as a raw material). On the other
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hand, if this price is excessive, then the firm that can potentially purchase the waste may

switch to an alternative source of raw material. Thus, the pricing of the wastes affects not

only the revenues of the firms involved but also their operations.
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